Suppr超能文献

人工智能建议的立体定向放疗治疗早期肺癌患者生存预测模型。

Artificial Intelligence-suggested Predictive Model of Survival in Patients Treated With Stereotactic Radiotherapy for Early Lung Cancer.

机构信息

Radiation Oncology Department, Spedali Civili and University of Brescia, Brescia, Italy.

Radiation Oncology Department, Humanitas-Gavazzeni, Bergamo, Italy.

出版信息

In Vivo. 2024 May-Jun;38(3):1359-1366. doi: 10.21873/invivo.13576.

Abstract

BACKGROUND/AIM: Overall survival (OS)-predictive models to clinically stratify patients with stage I Non-Small Cell Lung Cancer (NSCLC) undergoing stereotactic body radiation therapy (SBRT) are still unavailable. The aim of this work was to build a predictive model of OS in this setting.

PATIENTS AND METHODS

Clinical variables of patients treated in three Institutions with SBRT for stage I NSCLC were retrospectively collected into a reference cohort A (107 patients) and 2 comparative cohorts B1 (32 patients) and B2 (38 patients). A predictive model was built using Cox regression (CR) and artificial neural networks (ANN) on reference cohort A and then tested on comparative cohorts.

RESULTS

Cohort B1 patients were older and with worse chronic obstructive pulmonary disease (COPD) than cohort A. Cohort B2 patients were heavier smokers but had lower Charlson Comorbidity Index (CCI). At CR analysis for cohort A, only ECOG Performance Status 0-1 and absence of previous neoplasms correlated with better OS. The model was enhanced combining ANN and CR findings. The reference cohort was divided into prognostic Group 1 (0-2 score) and Group 2 (3-9 score) to assess model's predictions on OS: grouping was close to statistical significance (p=0.081). One and 2-year OS resulted higher for Group 1, lower for Group 2. In comparative cohorts, the model successfully predicted two groups of patients with divergent OS trends: higher for Group 1 and lower for Group 2.

CONCLUSION

The produced model is a relevant tool to clinically stratify SBRT candidates into prognostic groups, even when applied to different cohorts. ANN are a valuable resource, providing useful data to build a prognostic model that deserves to be validated prospectively.

摘要

背景/目的:目前尚无用于对接受立体定向体部放射治疗(SBRT)的 I 期非小细胞肺癌(NSCLC)患者进行临床分层的总生存(OS)预测模型。本研究旨在建立这种情况下的 OS 预测模型。

患者和方法

回顾性收集了三所机构中接受 SBRT 治疗的 I 期 NSCLC 患者的临床变量,纳入参考队列 A(107 例患者)和两个比较队列 B1(32 例患者)和 B2(38 例患者)。使用 Cox 回归(CR)和人工神经网络(ANN)在参考队列 A 上构建预测模型,然后在比较队列上进行测试。

结果

队列 B1 的患者年龄较大,慢性阻塞性肺疾病(COPD)较严重,而队列 B2 的患者吸烟量较大,但Charlson 合并症指数(CCI)较低。在对队列 A 进行 CR 分析时,仅 ECOG 表现状态 0-1 和无先前肿瘤与更好的 OS 相关。通过结合 ANN 和 CR 的发现,该模型得到了增强。将参考队列分为预后良好的第 1 组(0-2 分)和第 2 组(3-9 分),以评估模型对 OS 的预测:分组接近统计学意义(p=0.081)。第 1 组的 1 年和 2 年 OS 更高,第 2 组的 OS 更低。在比较队列中,该模型成功地预测了两组具有不同 OS 趋势的患者:第 1 组的 OS 更高,第 2 组的 OS 更低。

结论

该模型是一种有用的工具,可以将 SBRT 候选者分为预后良好的组,即使在应用于不同队列时也是如此。ANN 是一种有价值的资源,为构建值得前瞻性验证的预后模型提供了有用的数据。

相似文献

5
Curative treatment of Stage I non-small-cell lung cancer in patients with severe COPD: stereotactic radiotherapy outcomes and systematic review.
Int J Radiat Oncol Biol Phys. 2012 Mar 1;82(3):1149-56. doi: 10.1016/j.ijrobp.2011.03.005. Epub 2011 Jun 2.
7
Prediction of early mortality following stereotactic body radiotherapy for peripheral early-stage lung cancer.
Acta Oncol. 2019 Feb;58(2):237-242. doi: 10.1080/0284186X.2018.1532602. Epub 2018 Nov 19.
10
Stereotactic body radiotherapy versus percutaneous local tumor ablation for early-stage non-small cell lung cancer.
Lung Cancer. 2019 Dec;138:6-12. doi: 10.1016/j.lungcan.2019.09.009. Epub 2019 Sep 16.

本文引用的文献

1
Artificial intelligence: A critical review of applications for lung nodule and lung cancer.
Diagn Interv Imaging. 2023 Jan;104(1):11-17. doi: 10.1016/j.diii.2022.11.007. Epub 2022 Dec 10.
3
Novel Harmonization Method for Multi-Centric Radiomic Studies in Non-Small Cell Lung Cancer.
Curr Oncol. 2022 Jul 22;29(8):5179-5194. doi: 10.3390/curroncol29080410.
5
A Novel Predictive Model for Anastomotic Leakage in Colorectal Cancer Using Auto-artificial Intelligence.
Anticancer Res. 2021 Nov;41(11):5821-5825. doi: 10.21873/anticanres.15400.
6
Artificial intelligence: opportunities in lung cancer.
Curr Opin Oncol. 2022 Jan 1;34(1):44-53. doi: 10.1097/CCO.0000000000000796.
8
A Novel Prediction Model for Colon Cancer Recurrence Using Auto-artificial Intelligence.
Anticancer Res. 2021 Sep;41(9):4629-4636. doi: 10.21873/anticanres.15276.
9
Artificial intelligence for clinical oncology.
Cancer Cell. 2021 Jul 12;39(7):916-927. doi: 10.1016/j.ccell.2021.04.002. Epub 2021 Apr 29.
10
NCCN Guidelines Insights: Non-Small Cell Lung Cancer, Version 2.2021.
J Natl Compr Canc Netw. 2021 Mar 2;19(3):254-266. doi: 10.6004/jnccn.2021.0013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验