Institute for Systems Biology, Seattle, WA 98109, USA.
Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
Cell Host Microbe. 2021 Nov 10;29(11):1709-1723.e5. doi: 10.1016/j.chom.2021.09.008. Epub 2021 Oct 11.
We present predictive models for comprehensive systems analysis of Clostridioides difficile, the etiology of pseudomembranous colitis. By leveraging 151 published transcriptomes, we generated an EGRIN model that organizes 90% of C. difficile genes into a transcriptional regulatory network of 297 co-regulated modules, implicating genes in sporulation, carbohydrate transport, and metabolism. By advancing a metabolic model through addition and curation of metabolic reactions including nutrient uptake, we discovered 14 amino acids, diverse carbohydrates, and 10 metabolic genes as essential for C. difficile growth in the intestinal environment. Finally, we developed a PRIME model to uncover how EGRIN-inferred combinatorial gene regulation by transcription factors, such as CcpA and CodY, modulates essential metabolic processes to enable C. difficile growth relative to commensal colonization. The C. difficile interactive web portal provides access to these model resources to support collaborative systems-level studies of context-specific virulence mechanisms in C. difficile.
我们提出了预测模型,用于全面系统分析艰难梭菌,即伪膜性结肠炎的病因。通过利用 151 个已发表的转录组,我们生成了一个 EGRIN 模型,将 90%的艰难梭菌基因组织成一个由 297 个共同调控模块组成的转录调控网络,涉及孢子形成、碳水化合物运输和代谢的基因。通过通过添加和整理包括营养吸收在内的代谢反应,推进代谢模型,我们发现 14 种氨基酸、多种碳水化合物和 10 个代谢基因是艰难梭菌在肠道环境中生长所必需的。最后,我们开发了一个 PRIME 模型,以揭示转录因子(如 CcpA 和 CodY)推断的 EGRIN 组合基因调控如何调节必需的代谢过程,从而使艰难梭菌相对于共生定植而生长。艰难梭菌交互式网络门户提供了对这些模型资源的访问,以支持针对艰难梭菌特定于上下文的毒力机制的协作系统级研究。