Apex Institute of Technology, Chandigarh University, Mohali 140413, Punjab, India.
Department of Media and Educational Informatics, Faculty of Informatics, Eötvös Loránd University, 1053 Budapest, Hungary.
Sensors (Basel). 2021 Oct 1;21(19):6584. doi: 10.3390/s21196584.
The incidence of cardiovascular diseases and cardiovascular burden (the number of deaths) are continuously rising worldwide. Heart disease leads to heart failure (HF) in affected patients. Therefore any additional aid to current medical support systems is crucial for the clinician to forecast the survival status for these patients. The collaborative use of machine learning and IoT devices has become very important in today's intelligent healthcare systems. This paper presents a Public Key Infrastructure (PKI) secured IoT enabled framework entitled Cardiac Diagnostic Feature and Demographic Identification (CDF-DI) systems with significant Models that recognize several Cardiac disease features related to HF. To achieve this goal, we used statistical and machine learning techniques to analyze the Cardiac secondary dataset. The Elevated Serum Creatinine (SC) levels and Serum Sodium (SS) could cause renal problems and are well established in HF patients. The Mann Whitney U test found that SC and SS levels affected the survival status of patients ( < 0.05). Anemia, diabetes, and BP features had no significant impact on the SS and SC level in the patient ( > 0.05). The Cox regression model also found a significant association of age group with the survival status using follow-up months. Furthermore, the present study also proposed important features of Cardiac disease that identified the patient's survival status, age group, and gender. The most prominent algorithm was the Random Forest (RF) suggesting five key features to determine the survival status of the patient with an accuracy of 96%: Follow-up months, SC, Ejection Fraction (EF), Creatinine Phosphokinase (CPK), and platelets. Additionally, the RF selected five prominent features (smoking habits, CPK, platelets, follow-up month, and SC) in recognition of gender with an accuracy of 94%. Moreover, the five vital features such as CPK, SC, follow-up month, platelets, and EF were found to be significant predictors for the patient's age group with an accuracy of 96%. The Kaplan Meier plot revealed that mortality was high in the extremely old age group (χ2 (1) = 8.565). The recommended features have possible effects on clinical practice and would be supportive aid to the existing medical support system to identify the possibility of the survival status of the heart patient. The doctor should primarily concentrate on the follow-up month, SC, EF, CPK, and platelet count for the patient's survival in the situation.
心血管疾病的发病率和心血管负担(死亡人数)在全球范围内持续上升。心脏病导致受影响患者出现心力衰竭(HF)。因此,任何对当前医疗支持系统的额外帮助对临床医生预测这些患者的生存状况都至关重要。机器学习和物联网设备的协作使用在当今的智能医疗保健系统中变得非常重要。本文提出了一个基于公钥基础设施(PKI)的安全物联网框架,名为心脏诊断特征和人口统计识别(CDF-DI)系统,该系统具有显著的模型,可以识别与 HF 相关的多种心脏疾病特征。为了实现这一目标,我们使用统计和机器学习技术来分析心脏二次数据集。升高的血清肌酐(SC)水平和血清钠(SS)可能导致肾脏问题,并且在 HF 患者中已经确立。Mann-Whitney U 检验发现,SC 和 SS 水平影响患者的生存状态(<0.05)。贫血、糖尿病和 BP 特征对患者的 SS 和 SC 水平没有显著影响(>0.05)。Cox 回归模型也发现年龄组与使用随访月的生存状态之间存在显著关联。此外,本研究还提出了心脏疾病的重要特征,这些特征确定了患者的生存状态、年龄组和性别。最突出的算法是随机森林(RF),它提出了五个关键特征来确定患者的生存状态,准确率为 96%:随访月、SC、射血分数(EF)、肌酸磷酸激酶(CPK)和血小板。此外,RF 选择了五个突出特征(吸烟习惯、CPK、血小板、随访月和 SC)来识别性别,准确率为 94%。此外,CPK、SC、随访月、血小板和 EF 等五个重要特征被发现是患者年龄组的重要预测因素,准确率为 96%。Kaplan-Meier 图显示,极高年龄组的死亡率很高(χ2(1)=8.565)。建议的特征可能对临床实践产生影响,并为现有医疗支持系统提供支持,以识别心脏病患者的生存状况的可能性。医生应主要关注患者的随访月、SC、EF、CPK 和血小板计数,以确保患者的生存。