School of Computer Sciences, Universiti Sains Malaysia, Penang, Malaysia.
Department of Management,Information and Production Engineering, University of Bergamo, Bergamo, Italy.
J Healthc Eng. 2021 Sep 29;2021:9930985. doi: 10.1155/2021/9930985. eCollection 2021.
The remarkable advancements in biotechnology and public healthcare infrastructures have led to a momentous production of critical and sensitive healthcare data. By applying intelligent data analysis techniques, many interesting patterns are identified for the early and onset detection and prevention of several fatal diseases. Diabetes mellitus is an extremely life-threatening disease because it contributes to other lethal diseases, i.e., heart, kidney, and nerve damage. In this paper, a machine learning based approach has been proposed for the classification, early-stage identification, and prediction of diabetes. Furthermore, it also presents an IoT-based hypothetical diabetes monitoring system for a healthy and affected person to monitor his blood glucose (BG) level. For diabetes classification, three different classifiers have been employed, i.e., random forest (RF), multilayer perceptron (MLP), and logistic regression (LR). For predictive analysis, we have employed long short-term memory (LSTM), moving averages (MA), and linear regression (LR). For experimental evaluation, a benchmark PIMA Indian Diabetes dataset is used. During the analysis, it is observed that MLP outperforms other classifiers with 86.08% of accuracy and LSTM improves the significant prediction with 87.26% accuracy of diabetes. Moreover, a comparative analysis of the proposed approach is also performed with existing state-of-the-art techniques, demonstrating the adaptability of the proposed approach in many public healthcare applications.
生物技术和公共医疗基础设施的显著进步带来了大量关键和敏感的医疗保健数据。通过应用智能数据分析技术,可以识别出许多有趣的模式,用于早期发现和预防多种致命疾病。糖尿病是一种极其危及生命的疾病,因为它会导致其他致命疾病,如心脏病、肾病和神经损伤。在本文中,提出了一种基于机器学习的方法,用于糖尿病的分类、早期识别和预测。此外,它还提出了一种基于物联网的假设性糖尿病监测系统,用于健康人和患者监测其血糖 (BG) 水平。对于糖尿病分类,使用了三种不同的分类器,即随机森林 (RF)、多层感知器 (MLP) 和逻辑回归 (LR)。对于预测分析,我们使用了长短期记忆 (LSTM)、移动平均线 (MA) 和线性回归 (LR)。对于实验评估,使用了基准 PIMA 印度糖尿病数据集。在分析过程中,观察到 MLP 以 86.08%的准确率优于其他分类器,而 LSTM 以 87.26%的准确率提高了糖尿病的显著预测能力。此外,还对所提出的方法进行了与现有最先进技术的比较分析,表明所提出的方法在许多公共医疗保健应用中具有适应性。
Comput Methods Programs Biomed. 2022-6
Comput Biol Med. 2021-8
Comput Intell Neurosci. 2022
Sensors (Basel). 2020-7-20
BMC Med Inform Decis Mak. 2021-1-25
J Diabetes Metab Disord. 2025-6-17
AMIA Jt Summits Transl Sci Proc. 2025-6-10
BMC Med Res Methodol. 2024-9-27
Bioengineering (Basel). 2024-4-15
Front Artif Intell. 2024-4-11
Front Public Health. 2023
Ann Pediatr Endocrinol Metab. 2020-12
Diabetes Res Clin Pract. 2020-8-3
Curr Diabetes Rev. 2020
Health Inf Sci Syst. 2020-1-3
Curr Pharm Des. 2020