文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于机器学习的医疗保健应用中的糖尿病分类和预测。

Machine Learning Based Diabetes Classification and Prediction for Healthcare Applications.

机构信息

School of Computer Sciences, Universiti Sains Malaysia, Penang, Malaysia.

Department of Management,Information and Production Engineering, University of Bergamo, Bergamo, Italy.

出版信息

J Healthc Eng. 2021 Sep 29;2021:9930985. doi: 10.1155/2021/9930985. eCollection 2021.


DOI:10.1155/2021/9930985
PMID:34631003
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8500744/
Abstract

The remarkable advancements in biotechnology and public healthcare infrastructures have led to a momentous production of critical and sensitive healthcare data. By applying intelligent data analysis techniques, many interesting patterns are identified for the early and onset detection and prevention of several fatal diseases. Diabetes mellitus is an extremely life-threatening disease because it contributes to other lethal diseases, i.e., heart, kidney, and nerve damage. In this paper, a machine learning based approach has been proposed for the classification, early-stage identification, and prediction of diabetes. Furthermore, it also presents an IoT-based hypothetical diabetes monitoring system for a healthy and affected person to monitor his blood glucose (BG) level. For diabetes classification, three different classifiers have been employed, i.e., random forest (RF), multilayer perceptron (MLP), and logistic regression (LR). For predictive analysis, we have employed long short-term memory (LSTM), moving averages (MA), and linear regression (LR). For experimental evaluation, a benchmark PIMA Indian Diabetes dataset is used. During the analysis, it is observed that MLP outperforms other classifiers with 86.08% of accuracy and LSTM improves the significant prediction with 87.26% accuracy of diabetes. Moreover, a comparative analysis of the proposed approach is also performed with existing state-of-the-art techniques, demonstrating the adaptability of the proposed approach in many public healthcare applications.

摘要

生物技术和公共医疗基础设施的显著进步带来了大量关键和敏感的医疗保健数据。通过应用智能数据分析技术,可以识别出许多有趣的模式,用于早期发现和预防多种致命疾病。糖尿病是一种极其危及生命的疾病,因为它会导致其他致命疾病,如心脏病、肾病和神经损伤。在本文中,提出了一种基于机器学习的方法,用于糖尿病的分类、早期识别和预测。此外,它还提出了一种基于物联网的假设性糖尿病监测系统,用于健康人和患者监测其血糖 (BG) 水平。对于糖尿病分类,使用了三种不同的分类器,即随机森林 (RF)、多层感知器 (MLP) 和逻辑回归 (LR)。对于预测分析,我们使用了长短期记忆 (LSTM)、移动平均线 (MA) 和线性回归 (LR)。对于实验评估,使用了基准 PIMA 印度糖尿病数据集。在分析过程中,观察到 MLP 以 86.08%的准确率优于其他分类器,而 LSTM 以 87.26%的准确率提高了糖尿病的显著预测能力。此外,还对所提出的方法进行了与现有最先进技术的比较分析,表明所提出的方法在许多公共医疗保健应用中具有适应性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd57/8500744/49c532b0cbfe/JHE2021-9930985.alg.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd57/8500744/37ec7725e872/JHE2021-9930985.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd57/8500744/6fbbed531a74/JHE2021-9930985.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd57/8500744/393e58cf9f40/JHE2021-9930985.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd57/8500744/3443183e57ef/JHE2021-9930985.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd57/8500744/149f6ef18342/JHE2021-9930985.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd57/8500744/93b8ee0b9467/JHE2021-9930985.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd57/8500744/f3ec88b7833d/JHE2021-9930985.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd57/8500744/72e8830e64d5/JHE2021-9930985.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd57/8500744/d4b5712597db/JHE2021-9930985.009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd57/8500744/6426a0a4fe06/JHE2021-9930985.010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd57/8500744/410b117d113b/JHE2021-9930985.011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd57/8500744/0b882bd774b4/JHE2021-9930985.alg.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd57/8500744/49c532b0cbfe/JHE2021-9930985.alg.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd57/8500744/37ec7725e872/JHE2021-9930985.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd57/8500744/6fbbed531a74/JHE2021-9930985.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd57/8500744/393e58cf9f40/JHE2021-9930985.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd57/8500744/3443183e57ef/JHE2021-9930985.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd57/8500744/149f6ef18342/JHE2021-9930985.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd57/8500744/93b8ee0b9467/JHE2021-9930985.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd57/8500744/f3ec88b7833d/JHE2021-9930985.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd57/8500744/72e8830e64d5/JHE2021-9930985.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd57/8500744/d4b5712597db/JHE2021-9930985.009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd57/8500744/6426a0a4fe06/JHE2021-9930985.010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd57/8500744/410b117d113b/JHE2021-9930985.011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd57/8500744/0b882bd774b4/JHE2021-9930985.alg.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd57/8500744/49c532b0cbfe/JHE2021-9930985.alg.002.jpg

相似文献

[1]
Machine Learning Based Diabetes Classification and Prediction for Healthcare Applications.

J Healthc Eng. 2021

[2]
Diabetes mellitus prediction and diagnosis from a data preprocessing and machine learning perspective.

Comput Methods Programs Biomed. 2022-6

[3]
A novel stacking technique for prediction of diabetes.

Comput Biol Med. 2021-8

[4]
A Novel Approach for Feature Selection and Classification of Diabetes Mellitus: Machine Learning Methods.

Comput Intell Neurosci. 2022

[5]
Prevalence and Early Prediction of Diabetes Using Machine Learning in North Kashmir: A Case Study of District Bandipora.

Comput Intell Neurosci. 2022

[6]
A Novel Diabetes Healthcare Disease Prediction Framework Using Machine Learning Techniques.

J Healthc Eng. 2022

[7]
Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.

Artif Intell Med. 2019-7-26

[8]
Intelligent Machine Learning Approach for Effective Recognition of Diabetes in E-Healthcare Using Clinical Data.

Sensors (Basel). 2020-5-6

[9]
EAGA-MLP-An Enhanced and Adaptive Hybrid Classification Model for Diabetes Diagnosis.

Sensors (Basel). 2020-7-20

[10]
Fetal birthweight prediction with measured data by a temporal machine learning method.

BMC Med Inform Decis Mak. 2021-1-25

引用本文的文献

[1]
Evolution of diabetes prediction using the fusion of ANOVA, ADASYN technique and XGBoost based on body composition data.

J Diabetes Metab Disord. 2025-6-17

[2]
SLR: A Modified Logistic Regression Model with Sinkhorn Divergence for Alzheimer's Disease Classification.

AMIA Jt Summits Transl Sci Proc. 2025-6-10

[3]
Assessment of Performance, Interpretability, and Explainability in Artificial Intelligence-Based Health Technologies: What Healthcare Stakeholders Need to Know.

Mayo Clin Proc Digit Health. 2023-4-21

[4]
A novel RFE-GRU model for diabetes classification using PIMA Indian dataset.

Sci Rep. 2025-1-6

[5]
An automated approach to predict diabetic patients using KNN imputation and effective data mining techniques.

BMC Med Res Methodol. 2024-9-27

[6]
Identifying COVID-19 survivors living with post-traumatic stress disorder through machine learning on Twitter.

Sci Rep. 2024-8-14

[7]
Machine Learning Approach with Harmonized Multinational Datasets for Enhanced Prediction of Hypothyroidism in Patients with Type 2 Diabetes.

Diagnostics (Basel). 2024-5-31

[8]
Leveraging a 7-Layer Long Short-Term Memory Model for Early Detection and Prevention of Diabetes in Oman: An Innovative Approach.

Bioengineering (Basel). 2024-4-15

[9]
Weighted Bayesian Belief Network for diabetics: a predictive model.

Front Artif Intell. 2024-4-11

[10]
Medical image analysis using deep learning algorithms.

Front Public Health. 2023

本文引用的文献

[1]
Teasing out Artificial Intelligence in Medicine: An Ethical Critique of Artificial Intelligence and Machine Learning in Medicine.

J Bioeth Inq. 2021-3

[2]
Role of exercise on insulin sensitivity and beta-cell function: is exercise sufficient for the prevention of youth-onset type 2 diabetes?

Ann Pediatr Endocrinol Metab. 2020-12

[3]
How artificial intelligence and machine learning can help healthcare systems respond to COVID-19.

Mach Learn. 2021

[4]
Classification of Diabetes Using Photoplethysmogram (PPG) Waveform Analysis: Logistic Regression Modeling.

Biomed Res Int. 2020

[5]
Beyond 2020: Modelling obesity and diabetes prevalence.

Diabetes Res Clin Pract. 2020-8-3

[6]
Global and regional estimates and projections of diabetes-related health expenditure: Results from the International Diabetes Federation Diabetes Atlas, 9th edition.

Diabetes Res Clin Pract. 2020-2-13

[7]
Comparative Analysis of Classification Methods with PCA and LDA for Diabetes.

Curr Diabetes Rev. 2020

[8]
Classification and prediction of diabetes disease using machine learning paradigm.

Health Inf Sci Syst. 2020-1-3

[9]
Interaction between postmenopausal hormone therapy and diabetes on cataract.

Menopause. 2020-3

[10]
Type 1 Diabetes and Physical Exercise: Moving (forward) as an Adjuvant Therapy.

Curr Pharm Des. 2020

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索