Suppr超能文献

窦房结钙离子反馈模型中的涌现活动、异质性和鲁棒性。

Emergent activity, heterogeneity, and robustness in a calcium feedback model of the sinoatrial node.

机构信息

Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio; Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio.

Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio; Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio.

出版信息

Biophys J. 2023 May 2;122(9):1613-1632. doi: 10.1016/j.bpj.2023.03.024. Epub 2023 Mar 21.

Abstract

The sinoatrial node (SAN) is the primary pacemaker of the heart. SAN activity emerges at an early point in life and maintains a steady rhythm for the lifetime of the organism. The ion channel composition and currents of SAN cells can be influenced by a variety of factors. Therefore, the emergent activity and long-term stability imply some form of dynamical feedback control of SAN activity. We adapt a recent feedback model-previously utilized to describe control of ion conductances in neurons-to a model of SAN cells and tissue. The model describes a minimal regulatory mechanism of ion channel conductances via feedback between intracellular calcium and an intrinsic target calcium level. By coupling a SAN cell to the calcium feedback model, we show that spontaneous electrical activity emerges from quiescence and is maintained at steady state. In a 2D SAN tissue model, spatial variability in intracellular calcium targets lead to significant, self-organized heterogeneous ion channel expression and calcium transients throughout the tissue. Furthermore, multiple pacemaking regions appear, which interact and lead to time-varying cycle length, demonstrating that variability in heart rate is an emergent property of the feedback model. Finally, we demonstrate that the SAN tissue is robust to the silencing of leading cells or ion channel knockouts. Thus, the calcium feedback model can reproduce and explain many fundamental emergent properties of activity in the SAN that have been observed experimentally based on a minimal description of intracellular calcium and ion channel regulatory networks.

摘要

窦房结(SAN)是心脏的主要起搏点。SAN 活动在生命早期出现,并为生物体的整个生命周期维持稳定的节律。SAN 细胞的离子通道组成和电流可以受到多种因素的影响。因此,出现的活动和长期稳定性意味着 SAN 活动存在某种形式的动态反馈控制。我们采用了最近的一种反馈模型——以前用于描述神经元中离子电导的控制——来构建一个 SAN 细胞和组织模型。该模型通过细胞内钙和内在目标钙水平之间的反馈来描述离子通道电导的最小调节机制。通过将 SAN 细胞与钙反馈模型耦合,我们展示了自发电活动从静止状态中出现并维持在稳定状态。在 2D SAN 组织模型中,细胞内钙目标的空间变异性导致整个组织中显著的、自我组织的异质离子通道表达和钙瞬变。此外,多个起搏区域出现,相互作用并导致时变的周期长度,表明心率的可变性是反馈模型的一个新兴特性。最后,我们证明了 SAN 组织对主导细胞沉默或离子通道敲除具有鲁棒性。因此,钙反馈模型可以再现和解释基于细胞内钙和离子通道调节网络的最小描述在 SAN 中观察到的许多基本活动的新兴特性。

相似文献

6
SR Ca2+ store refill--a key factor in cardiac pacemaking.肌浆网钙库再充--心脏起搏的关键因素。
J Mol Cell Cardiol. 2010 Sep;49(3):412-26. doi: 10.1016/j.yjmcc.2010.03.015. Epub 2010 Mar 29.

本文引用的文献

9
Genetic Complexity of Sinoatrial Node Dysfunction.窦房结功能障碍的遗传复杂性
Front Genet. 2021 Apr 1;12:654925. doi: 10.3389/fgene.2021.654925. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验