Department of Oncology (McArdle Laboratory for Cancer Research), Institute for Molecular Virology, and Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.
UW-Madison Microbiology Doctoral Training Program, Madison, Wisconsin, USA.
J Virol. 2022 Jan 12;96(1):e0134921. doi: 10.1128/JVI.01349-21. Epub 2021 Oct 13.
HIV-1 virion production is driven by Gag and Gag-Pol (GP) proteins, with Gag forming the bulk of the capsid and driving budding, while GP binds Gag to deliver the essential virion enzymes protease, reverse transcriptase, and integrase. Virion GP levels are traditionally thought to reflect the relative abundances of GP and Gag in cells (∼1:20), dictated by the frequency of a -1 programmed ribosomal frameshifting (PRF) event occurring in mRNAs. Here, we exploited a panel of PRF mutant viruses to show that mechanisms in addition to PRF regulate GP incorporation into virions. First, we show that GP is enriched ∼3-fold in virions relative to cells, with viral infectivity being better maintained at subphysiological levels of GP than when GP levels are too high. Second, we report that GP is more efficiently incorporated into virions when Gag and GP are synthesized in (i.e., from the same mRNA) than in , suggesting that Gag/GP translation and assembly are spatially coupled processes. Third, we show that, surprisingly, virions exhibit a strong upper limit to -delivered GP incorporation; an adaptation that appears to allow the virus to temper defects to GP/Gag cleavage that may negatively impact reverse transcription. Taking these results together, we propose a "weighted Goldilocks" scenario for HIV-1 GP incorporation, wherein combined mechanisms of GP enrichment and exclusion buffer virion infectivity over a broad range of local GP concentrations. These results provide new insights into the HIV-1 virion assembly pathway relevant to the anticipated efficacy of PRF-targeted antiviral strategies. HIV-1 infectivity requires incorporation of the Gag-Pol (GP) precursor polyprotein into virions during the process of virus particle assembly. Mechanisms dictating GP incorporation into assembling virions are poorly defined, with GP levels in virions traditionally thought to solely reflect relative levels of Gag and GP expressed in cells, dictated by the frequency of a -1 programmed ribosomal frameshifting (PRF) event that occurs in mRNAs. Herein, we provide experimental support for a "weighted Goldilocks" scenario for GP incorporation, wherein the virus exploits both random and nonrandom mechanisms to buffer infectivity over a wide range of GP expression levels. These mechanistic data are relevant to ongoing efforts to develop antiviral strategies targeting PRF frequency and/or HIV-1 virion maturation.
HIV-1 病毒粒子的产生由 Gag 和 Gag-Pol (GP) 蛋白驱动,其中 Gag 形成衣壳的大部分并驱动出芽,而 GP 将 Gag 结合以提供必需的病毒酶蛋白酶、逆转录酶和整合酶。传统上认为病毒粒子 GP 水平反映了细胞中 GP 和 Gag 的相对丰度(约 1:20),这是由在 mRNAs 中发生的 -1 程序性核糖体移码(PRF)事件的频率决定的。在这里,我们利用一组 PRF 突变病毒来表明,除了 PRF 之外,还有其他机制调节 GP 掺入病毒粒子。首先,我们表明,相对于细胞,GP 在病毒粒子中富集约 3 倍,当 GP 水平过高时,病毒感染性保持在亚生理水平时更好。其次,我们报告说,当 Gag 和 GP 在 (即,来自同一 mRNA)中合成时,GP 更有效地掺入病毒粒子中,这表明 Gag/GP 翻译和组装是空间偶联的过程。第三,我们表明,令人惊讶的是,病毒粒子对 - 递送来的 GP 掺入具有很强的上限;这种适应似乎允许病毒调节可能对逆转录产生负面影响的 GP/Gag 切割缺陷。综合这些结果,我们提出了一个 HIV-1 GP 掺入的“加权金发姑娘”情景,其中 GP 富集和排除的综合机制缓冲了广泛的局部 GP 浓度范围内的病毒粒子感染性。这些结果为 HIV-1 病毒粒子组装途径提供了新的见解,这与预期的 PRF 靶向抗病毒策略的疗效相关。HIV-1 感染性需要在病毒粒子组装过程中将 Gag-Pol (GP) 前体多蛋白掺入病毒粒子中。决定 GP 掺入组装病毒粒子的机制尚未完全确定,传统上认为病毒粒子中的 GP 水平仅反映细胞中表达的 Gag 和 GP 的相对水平,这是由 mRNAs 中发生的 -1 程序性核糖体移码(PRF)事件的频率决定的。在此,我们为 GP 掺入的“加权金发姑娘”情景提供了实验支持,其中病毒利用随机和非随机机制在广泛的 GP 表达水平范围内缓冲感染性。这些机制数据与正在进行的开发针对 PRF 频率和/或 HIV-1 病毒粒子成熟的抗病毒策略的努力相关。