Suppr超能文献

基于无状态可逆 VAMPnets 鉴定的慢折叠模式构建的 Trp-Cage 微蛋白的高分辨率 Markov 态模型动力学

High-Resolution Markov State Models for the Dynamics of Trp-Cage Miniprotein Constructed Over Slow Folding Modes Identified by State-Free Reversible VAMPnets.

机构信息

Pritzker School of Molecular Engineering , University of Chicago , Chicago , Illinois 60637 , United States.

Department of Physics , University of Illinois at Urbana-Champaign , 1110 West Green Street , Urbana , Illinois 61801 , United States.

出版信息

J Phys Chem B. 2019 Sep 26;123(38):7999-8009. doi: 10.1021/acs.jpcb.9b05578. Epub 2019 Sep 16.

Abstract

State-free reversible VAMPnets (SRVs) are a neural network-based framework capable of learning the leading eigenfunctions of the transfer operator of a dynamical system from trajectory data. In molecular dynamics simulations, these data-driven collective variables capture the slowest modes of the dynamics and are useful for enhanced sampling and free energy estimation. In this work, we employ SRV coordinates as a feature set for Markov state model (MSM) construction. Compared to the current state-of-the-art, MSMs constructed from SRV coordinates are more robust to the choice of input features, exhibit faster implied time scale convergence, and permit the use of shorter lagtimes to construct higher kinetic resolution models. We apply this methodology to study the folding kinetics and conformational landscape of the Trp-cage miniprotein. Folding and unfolding mean first passage times are in good agreement with the prior literature, and a nine macrostate model is presented. The unfolded ensemble comprises a central kinetic hub with interconversions to several metastable unfolded conformations and which serves as the gateway to the folded ensemble. The folded ensemble comprises the native state, a partially unfolded intermediate "loop" state, and a previously unreported short-lived intermediate that we were able to resolve due to the high time resolution of the SRV-MSM. We propose SRVs as an excellent candidate for integration into modern MSM construction pipelines.

摘要

无状态可逆 VAMP 网络(SRV)是一种基于神经网络的框架,能够从轨迹数据中学习动力系统传递算子的主导本征函数。在分子动力学模拟中,这些数据驱动的集体变量捕捉到了动力学的最慢模式,对于增强采样和自由能估计很有用。在这项工作中,我们将 SRV 坐标用作构建马尔可夫状态模型(MSM)的特征集。与当前最先进的方法相比,从 SRV 坐标构建的 MSM 对输入特征的选择更稳健,表现出更快的隐含时间尺度收敛性,并允许使用更短的滞后时间来构建更高动力学分辨率的模型。我们应用这种方法来研究 Trp-cage 小蛋白的折叠动力学和构象景观。折叠和展开的平均首次通过时间与先前的文献一致,并提出了一个九宏观态模型。展开的集合由一个中央动力学枢纽组成,与几个亚稳态展开构象相互转换,并且作为折叠集合的入口。折叠集合包括天然状态、部分展开的中间“环”状态和以前未报道的短暂中间状态,我们能够由于 SRV-MSM 的高时间分辨率而解决该中间状态。我们提出 SRV 作为集成到现代 MSM 构建管道中的优秀候选者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验