Suppr超能文献

通过对高光谱二次离子质谱数据集的无监督处理揭示重叠指纹的污染和序列。

Revealing Contamination and Sequence of Overlapping Fingerprints by Unsupervised Treatment of a Hyperspectral Secondary Ion Mass Spectrometry Dataset.

机构信息

Consorzio per lo Sviluppo dei Sistemi a Grande Interfase, CSGI, Viale A. Doria 6, 95125 Catania, Italy.

Department of Chemical Sciences, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy.

出版信息

Anal Chem. 2021 Oct 26;93(42):14099-14105. doi: 10.1021/acs.analchem.1c01981. Epub 2021 Oct 13.

Abstract

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) has been successfully applied for chemical imaging of overlapping fingermarks. The resulting big dataset has been treated by means of an unsupervised machine learning approach based on uniform manifold approximation and projection. The hyperspectral matrix was composed of 49 million pixels associated with 518 peaks. However, the single-pixel spectrum results in a very poor signal intensity, mostly like a barcode. Contrary to what has been reported in the literature recently, we have not applied a crude approach based on binning but a sophisticated machine learning method capable of separating the chemical signals of the two fingerprints from each other and from the substrate in which they were impressed. Moreover, using ToF-SIMS, an extremely surface-sensitive technique, the sequence of deposition of the fingerprints has been determined.

摘要

飞行时间二次离子质谱法 (ToF-SIMS) 已成功应用于重叠指纹的化学成像。通过基于一致流形逼近和投影的无监督机器学习方法对生成的大数据集进行处理。高光谱矩阵由 4900 万个像素组成,与 518 个峰相关联。然而,单像素光谱导致信号强度非常低,看起来很像条形码。与最近文献中的报道相反,我们没有采用基于分箱的粗糙方法,而是采用了一种复杂的机器学习方法,能够将两个指纹的化学信号彼此以及与它们所压印的基质区分开来。此外,使用飞行时间二次离子质谱法这种极其敏感的表面分析技术,可以确定指纹的沉积顺序。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9dc4/8552212/b5081496167b/ac1c01981_0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验