Suppr超能文献

基于均摊近似和投影的维度约简技术获取的质谱成像谱的/-值优先级排序。

Prioritization of /-Values in Mass Spectrometry Imaging Profiles Obtained Using Uniform Manifold Approximation and Projection for Dimensionality Reduction.

机构信息

STADIUS Center for Dynamical Systems, Signal Processing, and Data Analytics, Department of Electrical Engineering (ESAT), KU Leuven, 3001 Leuven, Belgium.

Department of Cellular and Molecular Medicine, KU Leuven, 3001 Leuven, Belgium.

出版信息

Anal Chem. 2020 Apr 7;92(7):5240-5248. doi: 10.1021/acs.analchem.9b05764. Epub 2020 Mar 20.

Abstract

Mass spectrometry imaging (MSI) is a promising technique to assess the spatial distribution of molecules in a tissue sample. Nonlinear dimensionality reduction methods such as Uniform Manifold Approximation and Projection (UMAP) can be very valuable for the visualization of the massive data sets produced by MSI. These visualizations can offer us good initial insights regarding the heterogeneity and variety of molecular patterns present in the data, but they do not discern which molecules might be driving these observations. To prioritize the /-values associated with these biochemical profiles, we apply a bidirectional dimensionality reduction approach taking into account both the spectral and spatial information. The results show that both sources of information are instrumental to get a more comprehensive view on the relevant /-values and can support the reliability of the results obtained using UMAP. We illustrate our approach on heterogeneous pancreas tissues obtained from healthy mice.

摘要

质谱成像(MSI)是一种很有前途的技术,可以评估组织样本中分子的空间分布。非线性降维方法,如一致流形逼近和投影(UMAP),对于可视化 MSI 产生的大量数据集非常有价值。这些可视化可以为我们提供有关数据中存在的分子模式异质性和多样性的良好初步见解,但它们无法辨别哪些分子可能导致了这些观察结果。为了优先考虑与这些生化特征相关的 p 值,我们应用了一种考虑光谱和空间信息的双向降维方法。结果表明,这两种信息来源对于更全面地了解相关 p 值都很重要,并可以支持使用 UMAP 获得的结果的可靠性。我们在从健康小鼠获得的异质胰腺组织上展示了我们的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验