Suppr超能文献

从校准到参数学习:利用大数据在地球科学建模中的缩放效应。

From calibration to parameter learning: Harnessing the scaling effects of big data in geoscientific modeling.

机构信息

Civil and Environmental Engineering, Pennsylvania State University, University Park, PA, USA.

Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.

出版信息

Nat Commun. 2021 Oct 13;12(1):5988. doi: 10.1038/s41467-021-26107-z.

Abstract

The behaviors and skills of models in many geosciences (e.g., hydrology and ecosystem sciences) strongly depend on spatially-varying parameters that need calibration. A well-calibrated model can reasonably propagate information from observations to unobserved variables via model physics, but traditional calibration is highly inefficient and results in non-unique solutions. Here we propose a novel differentiable parameter learning (dPL) framework that efficiently learns a global mapping between inputs (and optionally responses) and parameters. Crucially, dPL exhibits beneficial scaling curves not previously demonstrated to geoscientists: as training data increases, dPL achieves better performance, more physical coherence, and better generalizability (across space and uncalibrated variables), all with orders-of-magnitude lower computational cost. We demonstrate examples that learned from soil moisture and streamflow, where dPL drastically outperformed existing evolutionary and regionalization methods, or required only ~12.5% of the training data to achieve similar performance. The generic scheme promotes the integration of deep learning and process-based models, without mandating reimplementation.

摘要

许多地球科学领域(如水文学和生态系统科学)的模型行为和技能强烈依赖于需要校准的空间变化参数。一个经过良好校准的模型可以通过模型物理合理地将信息从观测值传播到未观测变量,但传统的校准效率非常低,并且会导致非唯一解。在这里,我们提出了一种新颖的可微分参数学习(dPL)框架,该框架可以有效地学习输入(和可选的响应)与参数之间的全局映射。至关重要的是,dPL 表现出了有益的缩放曲线,这是以前没有向地球科学家展示过的:随着训练数据的增加,dPL 可以实现更好的性能、更高的物理一致性和更好的泛化能力(跨空间和未校准变量),而计算成本却降低了几个数量级。我们展示了从土壤湿度和流量中学习的示例,其中 dPL 大大优于现有的进化和区域化方法,或者只需要 ~12.5%的训练数据就可以达到类似的性能。该通用方案促进了深度学习和基于过程的模型的集成,而无需强制重新实现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61ff/8514470/3559a740a8d2/41467_2021_26107_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验