Suppr超能文献

用于估算社会水文洪水风险模型参数的经验数据的价值

The Value of Empirical Data for Estimating the Parameters of a Sociohydrological Flood Risk Model.

作者信息

Barendrecht M H, Viglione A, Kreibich H, Merz B, Vorogushyn S, Blöschl G

机构信息

Centre for Water Resource Systems Vienna University of Technology Vienna Austria.

GFZ German Research Centre for Geosciences, Section Hydrology, Telegrafenberg Potsdam Germany.

出版信息

Water Resour Res. 2019 Feb;55(2):1312-1336. doi: 10.1029/2018WR024128. Epub 2019 Feb 15.

Abstract

In this paper, empirical data are used to estimate the parameters of a sociohydrological flood risk model. The proposed model, which describes the interactions between floods, settlement density, awareness, preparedness, and flood loss, is based on the literature. Data for the case study of Dresden, Germany, over a period of 200 years, are used to estimate the model parameters through Bayesian inference. The credibility bounds of their estimates are small, even though the data are rather uncertain. A sensitivity analysis is performed to examine the value of the different data sources in estimating the model parameters. In general, the estimated parameters are less biased when using data at the end of the modeled period. Data about flood awareness are the most important to correctly estimate the parameters of this model and to correctly model the system dynamics. Using more data for other variables cannot compensate for the absence of awareness data. More generally, the absence of data mostly affects the estimation of the parameters that are directly related to the variable for which data are missing. This paper demonstrates that combining sociohydrological modeling and empirical data gives additional insights into the sociohydrological system, such as quantifying the forgetfulness of the society, which would otherwise not be easily achieved by sociohydrological models without data or by standard statistical analysis of empirical data.

摘要

在本文中,实证数据被用于估算一个社会水文洪水风险模型的参数。所提出的模型描述了洪水、定居点密度、意识、准备情况和洪水损失之间的相互作用,它基于相关文献。德国德累斯顿200年期间的案例研究数据,通过贝叶斯推理用于估算模型参数。尽管数据相当不确定,但参数估计的可信区间很小。进行了敏感性分析,以检验不同数据源在估算模型参数方面的价值。一般来说,使用建模期结束时的数据时,估计参数的偏差较小。关于洪水意识的数据对于正确估算该模型的参数以及正确模拟系统动态最为重要。使用更多其他变量的数据无法弥补意识数据的缺失。更普遍地说,数据的缺失主要影响与缺失数据的变量直接相关的参数估计。本文表明,将社会水文建模与实证数据相结合,能为社会水文系统提供更多见解,比如量化社会的遗忘程度,而这在没有数据的社会水文模型或实证数据的标准统计分析中是不容易实现的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13c2/6472491/60a1cf3a4c87/WRCR-55-1312-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验