Suppr超能文献

自动驾驶条件下驾驶员被动疲劳的电生理频域分析。

Electrophysiological frequency domain analysis of driver passive fatigue under automated driving conditions.

机构信息

School of Psychology, Liaoning Normal University, Dalian, 116029, China.

School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, 116024, China.

出版信息

Sci Rep. 2021 Oct 13;11(1):20348. doi: 10.1038/s41598-021-99680-4.

Abstract

With the continuous improvement of automated vehicles, researchers have found that automated driving is more likely to cause passive fatigue. To explore the impact of automation and scenario complexity on the passive fatigue of a driver, we collected electroencephalography (EEG), detection-response task (DRT) performance, and the subjective report scores of 48 drivers. We found that in automated driving under monotonic conditions, after 40 min, the alpha power of the driver's EEG indicators increased significantly, the accuracy of the detection reaction task decreased, and the reaction time became slower. The receiver characteristic curve was used to calculate the critical threshold of the alpha power during passive fatigue. The determination of the threshold further clarifies the occurrence time and physiological characteristics of passive fatigue and improves the passive fatigue theory.

摘要

随着自动驾驶技术的不断发展,研究人员发现自动驾驶更容易导致被动疲劳。为了探索自动化和场景复杂性对驾驶员被动疲劳的影响,我们收集了 48 名驾驶员的脑电图(EEG)、检测-响应任务(DRT)表现和主观报告评分。我们发现,在单调条件下的自动驾驶中,40 分钟后,驾驶员脑电图指标的阿尔法功率显著增加,检测反应任务的准确性降低,反应时间变得更慢。我们使用接收机特征曲线计算了被动疲劳期间阿尔法功率的临界阈值。该阈值的确定进一步阐明了被动疲劳的发生时间和生理特征,完善了被动疲劳理论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3030/8514533/3dab2e0c50e7/41598_2021_99680_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验