University of Liège, Liège, Belgium.
Department of Hematobiology and Immuno-Hematology, Liège University Hospital, Liège, Belgium.
Sci Rep. 2021 Oct 13;11(1):20288. doi: 10.1038/s41598-021-99628-8.
The early identification of bacteremia is critical for ensuring appropriate treatment of nosocomial infections in intensive care unit (ICU) patients. The aim of this study was to use flow cytometric data of myeloid cells as a biomarker of bloodstream infection (BSI). An eight-color antibody panel was used to identify seven monocyte and two dendritic cell subsets. In the learning cohort, immunophenotyping was applied to (1) control subjects, (2) postoperative heart surgery patients, as a model of noninfectious inflammatory responses, and (3) blood culture-positive patients. Of the complex changes in the myeloid cell phenotype, a decrease in myeloid and plasmacytoid dendritic cell numbers, increase in CD14CD16 inflammatory monocyte numbers, and upregulation of neutrophils CD64 and CD123 expression were prominent in BSI patients. An extreme gradient boosting (XGBoost) algorithm called the "infection detection and ranging score" (iDAR), ranging from 0 to 100, was developed to identify infection-specific changes in 101 phenotypic variables related to neutrophils, monocytes and dendritic cells. The tenfold cross-validation achieved an area under the receiver operating characteristic (AUROC) of 0.988 (95% CI 0.985-1) for the detection of bacteremic patients. In an out-of-sample, in-house validation, iDAR achieved an AUROC of 0.85 (95% CI 0.71-0.98) in differentiating localized from bloodstream infection and 0.95 (95% CI 0.89-1) in discriminating infected from noninfected ICU patients. In conclusion, a machine learning approach was used to translate the changes in myeloid cell phenotype in response to infection into a score that could identify bacteremia with high specificity in ICU patients.
血流感染(BSI)的早期识别对于确保重症监护病房(ICU)患者的医院获得性感染得到适当治疗至关重要。本研究旨在使用髓样细胞的流式细胞术数据作为BSI 的生物标志物。使用八色抗体面板来鉴定七个单核细胞和两个树突状细胞亚群。在学习队列中,免疫表型分析应用于(1)对照受试者,(2)作为非感染性炎症反应模型的心脏手术后患者,以及(3)血培养阳性患者。在髓样细胞表型的复杂变化中,BSI 患者中髓样细胞和浆细胞样树突状细胞数量减少,CD14CD16 炎性单核细胞数量增加,中性粒细胞 CD64 和 CD123 表达上调。开发了一种称为“感染检测和范围评分”(iDAR)的极端梯度提升(XGBoost)算法,范围从 0 到 100,以识别与中性粒细胞、单核细胞和树突状细胞相关的 101 个表型变量中的感染特异性变化。十倍交叉验证实现了 0.988(95%CI 0.985-1)的接收者操作特征曲线(AUROC),用于检测菌血症患者。在内部验证中,iDAR 在区分局部感染和血流感染方面的 AUROC 为 0.85(95%CI 0.71-0.98),在区分感染和非感染 ICU 患者方面的 AUROC 为 0.95(95%CI 0.89-1)。总之,机器学习方法用于将髓样细胞表型对感染的反应变化转化为能够在 ICU 患者中以高特异性识别菌血症的评分。