Aix Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), Turing Center for Living Systems, Parc Scientifique de Luminy, Marseille (France).
Weizmann Institute of Science, Department of Molecular Cell Biology, Rehovot (Israel).
Theranostics. 2021 Sep 3;11(19):9180-9197. doi: 10.7150/thno.60503. eCollection 2021.
Cell cycle regulators are frequently altered in Triple-Negative Breast Cancer (TNBC). Emerging agents targeting these signals offer the possibility to design new combinatorial therapies. However, preclinical models that recapitulate TNBC primary resistance and heterogeneity are essential to evaluate the potency of these combined treatments. Bioinformatic processing of human breast cancer datasets was used to analyse correlations between expression levels of cell cycle regulators and patient survival outcome. The mouse model of TNBC resistance and heterogeneity was employed to analyse expression and targeting vulnerability of cell cycle regulators in the presence of BCL-XL blockage. Robustness of outcomes and selectivity was further explored using a panel of human breast cancer cells. Orthotopic studies in nude mice were applied for preclinical evaluation of efficacy and toxicity. Alterations of protein expression, phosphorylation, and/or cellular localisation were analysed by western blots, reverse phase protein array, and immunocytochemistry. Bioinformatics was performed to highlight drug's mechanisms of action. We report that high expression levels of the gene encoding BCL-XL and of specific cell cycle regulators correlate with poor survival outcomes of TNBC patients. Blockage of BCL-XL confers vulnerability to drugs targeting CDK1/2/4, but not FOXM1, CDK4/6, Aurora A and Aurora B, to all and human TNBC cell lines tested. Combined blockage of BCL-XL and CDK1/2/4 interfered with tumour growth . Mechanistically, we show that, co-targeting of BCL-XL and CDK1/2/4 synergistically inhibited cell viability by combinatorial depletion of survival and RTK/AKT signals, and concomitantly restoring FOXO3a tumour suppression actions. This was accompanied by an accumulation of DNA damage and consequently apoptosis. Our studies illustrate the possibility to exploit the vulnerability of TNBC cells to CDK1/2/4 inhibition by targeting BCL-XL. Moreover, they underline that specificity matters in targeting cell cycle regulators for combinatorial anticancer therapies.
细胞周期调控因子在三阴性乳腺癌(TNBC)中经常发生改变。针对这些信号的新兴药物为设计新的联合治疗方法提供了可能。然而, recapitulate TNBC 原发性耐药性和异质性的临床前模型对于评估这些联合治疗的疗效至关重要。 对人类乳腺癌数据集进行生物信息学处理,以分析细胞周期调控因子的表达水平与患者生存结局之间的相关性。使用 TNBC 耐药性和异质性的小鼠模型,分析在阻断 BCL-XL 的情况下细胞周期调控因子的表达和靶向易感性。使用一系列人乳腺癌细胞进一步探索了结果的稳健性和选择性。裸鼠的原位研究用于临床前评估疗效和毒性。通过 Western blot、反相蛋白阵列和免疫细胞化学分析蛋白表达、磷酸化和/或细胞定位的改变。生物信息学用于突出药物的作用机制。 我们报告,BCL-XL 基因编码的基因和特定细胞周期调控因子的高表达水平与 TNBC 患者的不良生存结局相关。阻断 BCL-XL 易受靶向 CDK1/2/4 的药物影响,但不受 FOXM1、CDK4/6、Aurora A 和 Aurora B 的影响,不受所有测试的 和人 TNBC 细胞系的影响。BCL-XL 和 CDK1/2/4 的联合阻断干扰肿瘤生长。从机制上讲,我们表明,BCL-XL 和 CDK1/2/4 的共同靶向通过组合耗尽生存和 RTK/AKT 信号协同抑制细胞活力,并同时恢复 FOXO3a 的肿瘤抑制作用。这伴随着 DNA 损伤的积累,进而导致细胞凋亡。 我们的研究说明了通过靶向 BCL-XL 利用 TNBC 细胞对 CDK1/2/4 抑制的易感性的可能性。此外,它们强调了在针对联合抗癌疗法靶向细胞周期调控因子时特异性的重要性。