Suppr超能文献

用于下肢行走外骨骼的力量放大控制器的制定与部署

Formulating and Deploying Strength Amplification Controllers for Lower-Body Walking Exoskeletons.

作者信息

Thomas Gray C, Campbell Orion, Nichols Nick, Brissonneau Nicolas, He Binghan, James Joshua, Paine Nicholas, Sentis Luis

机构信息

Department of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, MI, United States.

Apptronik Inc., Austin, TX, United States.

出版信息

Front Robot AI. 2021 Sep 27;8:720231. doi: 10.3389/frobt.2021.720231. eCollection 2021.

Abstract

Augmenting the physical strength of a human operator during unpredictable human-directed (volitional) movements is a relevant capability for several proposed exoskeleton applications, including mobility augmentation, manual material handling, and tool operation. Unlike controllers and augmentation systems designed for repetitive tasks (e.g., walking), we approach physical strength augmentation by a task-agnostic method of force amplification-using force/torque sensors at the human-machine interface to estimate the human task force, and then amplifying it with the exoskeleton. We deploy an amplification controller that is integrated into a complete whole-body control framework for controlling exoskeletons that includes human-led foot transitions, inequality constraints, and a computationally efficient prioritization. A powered lower-body exoskeleton is used to demonstrate behavior of the control framework in a lab environment. This exoskeleton can assist the operator in lifting an unknown backpack payload while remaining fully backdrivable.

摘要

在不可预测的人为导向(自主)运动中增强人类操作员的体力,对于包括增强移动性、人工物料搬运和工具操作在内的多种外骨骼应用来说是一项重要能力。与为重复性任务(如行走)设计的控制器和增强系统不同,我们采用一种与任务无关的力放大方法来增强体力——在人机接口处使用力/扭矩传感器估计人类任务力,然后通过外骨骼对其进行放大。我们部署了一个放大控制器,该控制器集成到一个完整的全身控制框架中,用于控制外骨骼,该框架包括人为引导的足部过渡、不等式约束和计算效率高的优先级排序。一个动力下肢外骨骼被用于在实验室环境中展示控制框架的行为。这种外骨骼可以帮助操作员提起未知的背包负载,同时保持完全可回推。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18d7/8502972/1b5cc09d2740/frobt-08-720231-g001.jpg

相似文献

1
Formulating and Deploying Strength Amplification Controllers for Lower-Body Walking Exoskeletons.
Front Robot AI. 2021 Sep 27;8:720231. doi: 10.3389/frobt.2021.720231. eCollection 2021.
2
Optimal Energy Shaping Control for a Backdrivable Hip Exoskeleton.
Proc Am Control Conf. 2023;2023:2065-2070. doi: 10.23919/acc55779.2023.10155839. Epub 2023 Jul 3.
3
Closing the Loop on Exoskeleton Motor Controllers: Benefits of Regression-Based Open-Loop Control.
IEEE Robot Autom Lett. 2020 Oct;5(4):6025-6032. doi: 10.1109/lra.2020.3011370. Epub 2020 Jul 22.
4
Exoskeleton Application to Military Manual Handling Tasks.
Hum Factors. 2022 May;64(3):527-554. doi: 10.1177/0018720820957467. Epub 2020 Nov 18.
5
A muscle-driven approach to restore stepping with an exoskeleton for individuals with paraplegia.
J Neuroeng Rehabil. 2017 May 30;14(1):48. doi: 10.1186/s12984-017-0258-6.
6
Reinforcement Learning and Control of a Lower Extremity Exoskeleton for Squat Assistance.
Front Robot AI. 2021 Jul 19;8:702845. doi: 10.3389/frobt.2021.702845. eCollection 2021.
7
A Real-Time Lift Detection Strategy for a Hip Exoskeleton.
Front Neurorobot. 2018 Apr 12;12:17. doi: 10.3389/fnbot.2018.00017. eCollection 2018.
10
Template model inspired leg force feedback based control can assist human walking.
IEEE Int Conf Rehabil Robot. 2017 Jul;2017:473-478. doi: 10.1109/ICORR.2017.8009293.

引用本文的文献

1
A Modular Framework for Task-Agnostic, Energy Shaping Control of Lower Limb Exoskeletons.
IEEE Trans Control Syst Technol. 2024 Nov;32(6):2359-2375. doi: 10.1109/tcst.2024.3429908. Epub 2024 Jul 30.

本文引用的文献

1
A Complex Stiffness Human Impedance Model With Customizable Exoskeleton Control.
IEEE Trans Neural Syst Rehabil Eng. 2020 Nov;28(11):2468-2477. doi: 10.1109/TNSRE.2020.3027501. Epub 2020 Nov 6.
2
The exoskeleton expansion: improving walking and running economy.
J Neuroeng Rehabil. 2020 Feb 19;17(1):25. doi: 10.1186/s12984-020-00663-9.
3
Reducing the metabolic rate of walking and running with a versatile, portable exosuit.
Science. 2019 Aug 16;365(6454):668-672. doi: 10.1126/science.aav7536.
4
On the Design and Control of Highly Backdrivable Lower-Limb Exoskeletons: A Discussion of Past and Ongoing Work.
IEEE Control Syst. 2018 Dec;38(6):88-113. doi: 10.1109/MCS.2018.2866605. Epub 2018 Nov 15.
5
Human-in-the-loop optimization of exoskeleton assistance during walking.
Science. 2017 Jun 23;356(6344):1280-1284. doi: 10.1126/science.aal5054.
6
State of the Art and Future Directions for Lower Limb Robotic Exoskeletons.
IEEE Trans Neural Syst Rehabil Eng. 2017 Feb;25(2):171-182. doi: 10.1109/TNSRE.2016.2521160. Epub 2016 Jan 27.
7
Autonomous exoskeleton reduces metabolic cost of human walking during load carriage.
J Neuroeng Rehabil. 2014 May 9;11:80. doi: 10.1186/1743-0003-11-80.
8
Neural PID Control of Robot Manipulators With Application to an Upper Limb Exoskeleton.
IEEE Trans Cybern. 2013 Apr;43(2):673-84. doi: 10.1109/TSMCB.2012.2214381. Epub 2013 Mar 7.
9
Design and control of RUPERT: a device for robotic upper extremity repetitive therapy.
IEEE Trans Neural Syst Rehabil Eng. 2007 Sep;15(3):336-46. doi: 10.1109/TNSRE.2007.903903.
10
Dynamics and control of robotic systems worn by humans.
J Dyn Syst Meas Control. 1991 Sep;113(3):379-87. doi: 10.1115/1.2896421.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验