Suppr超能文献

用于可反向驱动髋关节外骨骼的最优能量整形控制

Optimal Energy Shaping Control for a Backdrivable Hip Exoskeleton.

作者信息

Zhang Jiefu, Lin Jianping, Peddinti Vamsi, Gregg Robert D

机构信息

Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA.

State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

出版信息

Proc Am Control Conf. 2023;2023:2065-2070. doi: 10.23919/acc55779.2023.10155839. Epub 2023 Jul 3.

Abstract

Task-dependent controllers widely used in exoskeletons track predefined trajectories, which overly constrain the volitional motion of individuals with remnant voluntary mobility. Energy shaping, on the other hand, provides task-invariant assistance by altering the human body's dynamic characteristics in the closed loop. While human-exoskeleton systems are often modeled using Euler-Lagrange equations, in our previous work we modeled the system as a port-controlled-Hamiltonian system, and a task-invariant controller was designed for a knee-ankle exoskeleton using interconnection-damping assignment passivity-based control. In this paper, we extend this framework to design a controller for a backdrivable hip exoskeleton to assist multiple tasks. A set of basis functions that contains information of kinematics is selected and corresponding coefficients are optimized, which allows the controller to provide torque that fits normative human torque for different activities of daily life. Human-subject experiments with two able-bodied subjects demonstrated the controller's capability to reduce muscle effort across different tasks.

摘要

外骨骼中广泛使用的任务依赖型控制器跟踪预定义轨迹,这过度限制了具有残余自主运动能力个体的自主运动。另一方面,能量塑形通过在闭环中改变人体的动态特性来提供任务不变的辅助。虽然人机外骨骼系统通常使用欧拉 - 拉格朗日方程进行建模,但在我们之前的工作中,我们将该系统建模为端口受控哈密顿系统,并使用基于互联阻尼分配无源控制为膝 - 踝外骨骼设计了任务不变控制器。在本文中,我们扩展此框架以设计用于可背驱动髋外骨骼的控制器,以辅助多种任务。选择一组包含运动学信息的基函数并优化相应系数,这使得控制器能够提供适合不同日常生活活动的规范人体扭矩的扭矩。对两名身体健全的受试者进行的人体实验证明了该控制器在不同任务中减少肌肉用力的能力。

相似文献

1
Optimal Energy Shaping Control for a Backdrivable Hip Exoskeleton.
Proc Am Control Conf. 2023;2023:2065-2070. doi: 10.23919/acc55779.2023.10155839. Epub 2023 Jul 3.
3
An Energetic Approach to Task-Invariant Ankle Exoskeleton Control.
Rep U S. 2023 Oct;2023:6082-6089. doi: 10.1109/iros55552.2023.10342136. Epub 2023 Dec 13.
4
Enhancing Voluntary Motion with Modular, Backdrivable, Powered Hip and Knee Orthoses.
IEEE Robot Autom Lett. 2022 Jul;7(3):6155-6162. doi: 10.1109/LRA.2022.3145580. Epub 2022 Jan 25.
5
Optimized hip-knee-ankle exoskeleton assistance at a range of walking speeds.
J Neuroeng Rehabil. 2021 Oct 18;18(1):152. doi: 10.1186/s12984-021-00943-y.
6
Model-based control for exoskeletons with series elastic actuators evaluated on sit-to-stand movements.
J Neuroeng Rehabil. 2019 Jun 3;16(1):65. doi: 10.1186/s12984-019-0526-8.
7
Formulating and Deploying Strength Amplification Controllers for Lower-Body Walking Exoskeletons.
Front Robot AI. 2021 Sep 27;8:720231. doi: 10.3389/frobt.2021.720231. eCollection 2021.
8
Closing the Loop on Exoskeleton Motor Controllers: Benefits of Regression-Based Open-Loop Control.
IEEE Robot Autom Lett. 2020 Oct;5(4):6025-6032. doi: 10.1109/lra.2020.3011370. Epub 2020 Jul 22.
9
10
Neuromechanics and Energetics of Walking With an Ankle Exoskeleton Using Neuromuscular-Model Based Control: A Parameter Study.
Front Bioeng Biotechnol. 2021 Apr 9;9:615358. doi: 10.3389/fbioe.2021.615358. eCollection 2021.

引用本文的文献

1
A Task-Agnostic Hip Exoskeleton for Osteoarthritis Pain Relief: Energetic Control Across Activities of Daily Life.
IEEE Int Conf Rehabil Robot. 2025 May;2025:1299-1306. doi: 10.1109/ICORR66766.2025.11063157.
2
A Modular Framework for Task-Agnostic, Energy Shaping Control of Lower Limb Exoskeletons.
IEEE Trans Control Syst Technol. 2024 Nov;32(6):2359-2375. doi: 10.1109/tcst.2024.3429908. Epub 2024 Jul 30.
3
Improving Task-Agnostic Energy Shaping Control of Powered Exoskeletons with Task/Gait Classification.
IEEE Robot Autom Lett. 2024 Aug;9(8):6848-6855. doi: 10.1109/lra.2024.3414259. Epub 2024 Jun 13.

本文引用的文献

1
Enhancing Voluntary Motion with Modular, Backdrivable, Powered Hip and Knee Orthoses.
IEEE Robot Autom Lett. 2022 Jul;7(3):6155-6162. doi: 10.1109/LRA.2022.3145580. Epub 2022 Jan 25.
3
Review of control strategies for lower-limb exoskeletons to assist gait.
J Neuroeng Rehabil. 2021 Jul 27;18(1):119. doi: 10.1186/s12984-021-00906-3.
5
On the Design and Control of Highly Backdrivable Lower-Limb Exoskeletons: A Discussion of Past and Ongoing Work.
IEEE Control Syst. 2018 Dec;38(6):88-113. doi: 10.1109/MCS.2018.2866605. Epub 2018 Nov 15.
6
Underactuated Potential Energy Shaping with Contact Constraints: Application to a Powered Knee-Ankle Orthosis.
IEEE Trans Control Syst Technol. 2018 Jan;26(1):181-193. doi: 10.1109/TCST.2016.2646319. Epub 2017 Jan 17.
7
Kinesiology of the hip: a focus on muscular actions.
J Orthop Sports Phys Ther. 2010 Feb;40(2):82-94. doi: 10.2519/jospt.2010.3025.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验