Zhang Jiefu, Lin Jianping, Peddinti Vamsi, Gregg Robert D
Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA.
State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Proc Am Control Conf. 2023;2023:2065-2070. doi: 10.23919/acc55779.2023.10155839. Epub 2023 Jul 3.
Task-dependent controllers widely used in exoskeletons track predefined trajectories, which overly constrain the volitional motion of individuals with remnant voluntary mobility. Energy shaping, on the other hand, provides task-invariant assistance by altering the human body's dynamic characteristics in the closed loop. While human-exoskeleton systems are often modeled using Euler-Lagrange equations, in our previous work we modeled the system as a port-controlled-Hamiltonian system, and a task-invariant controller was designed for a knee-ankle exoskeleton using interconnection-damping assignment passivity-based control. In this paper, we extend this framework to design a controller for a backdrivable hip exoskeleton to assist multiple tasks. A set of basis functions that contains information of kinematics is selected and corresponding coefficients are optimized, which allows the controller to provide torque that fits normative human torque for different activities of daily life. Human-subject experiments with two able-bodied subjects demonstrated the controller's capability to reduce muscle effort across different tasks.
外骨骼中广泛使用的任务依赖型控制器跟踪预定义轨迹,这过度限制了具有残余自主运动能力个体的自主运动。另一方面,能量塑形通过在闭环中改变人体的动态特性来提供任务不变的辅助。虽然人机外骨骼系统通常使用欧拉 - 拉格朗日方程进行建模,但在我们之前的工作中,我们将该系统建模为端口受控哈密顿系统,并使用基于互联阻尼分配无源控制为膝 - 踝外骨骼设计了任务不变控制器。在本文中,我们扩展此框架以设计用于可背驱动髋外骨骼的控制器,以辅助多种任务。选择一组包含运动学信息的基函数并优化相应系数,这使得控制器能够提供适合不同日常生活活动的规范人体扭矩的扭矩。对两名身体健全的受试者进行的人体实验证明了该控制器在不同任务中减少肌肉用力的能力。