Suppr超能文献

通过视黄酸结合蛋白的定点点击功能化反应产生类叶黄素系统。

Xanthopsin-Like Systems via Site-Specific Click-Functionalization of a Retinoic Acid Binding Protein.

机构信息

Dipartimento di Biotecnologie, Chimica e Farmacia, Dipartimento di Eccellenza 2018-2022), Università degli Studi di Siena, Via A. Moro 2, 53100, Siena, Italy.

Toscana Life Sciences Foundation, Via Fiorentina 1, 53100, Siena, Italy.

出版信息

Chembiochem. 2022 Jan 5;23(1):e202100449. doi: 10.1002/cbic.202100449. Epub 2021 Nov 5.

Abstract

The use of light-responsive proteins to control both living or synthetic cells, is at the core of the expanding fields of optogenetics and synthetic biology. It is thus apparent that a richer reaction toolbox for the preparation of such systems is of fundamental importance. Here, we provide a proof-of-principle demonstration that Morita-Baylis-Hillman adducts can be employed to perform a facile site-specific, irreversible and diastereoselective click-functionalization of a lysine residue buried into a lipophilic binding pocket and yielding an unnatural chromophore with an extended π-system. In doing so we effectively open the path to the in vitro preparation of a library of synthetic proteins structurally reminiscent of xanthopsin eubacterial photoreceptors. We argue that such a library, made of variable unnatural chromophores inserted in an easy-to-mutate and crystallize retinoic acid transporter, significantly expand the scope of the recently introduced rhodopsin mimics as both optogenetic and "lab-on-a-molecule" tools.

摘要

利用光响应蛋白来控制活细胞或合成细胞,是不断发展的光遗传学和合成生物学领域的核心。因此,显然更丰富的反应工具箱对于制备此类系统至关重要。在这里,我们提供了一个原理证明,即 Morita-Baylis-Hillman 加合物可用于对埋藏在亲脂性结合口袋中的赖氨酸残基进行简便的、位点特异性的、不可逆的和非对映选择性的点击官能化,从而得到具有扩展的π系统的非天然生色团。这样,我们就有效地开辟了在体外制备类似于细菌黄质光感受器的结构的合成蛋白文库的途径。我们认为,这样的文库由插入易于突变和结晶的维甲酸转运蛋白的可变非天然生色团组成,可极大地扩展最近引入的视蛋白模拟物作为光遗传学和“分子上的实验室”工具的范围。

相似文献

1
Xanthopsin-Like Systems via Site-Specific Click-Functionalization of a Retinoic Acid Binding Protein.
Chembiochem. 2022 Jan 5;23(1):e202100449. doi: 10.1002/cbic.202100449. Epub 2021 Nov 5.
2
Engineering a rhodopsin protein mimic.
J Am Chem Soc. 2006 Apr 12;128(14):4522-3. doi: 10.1021/ja058591m.
3
A Photoisomerizing Rhodopsin Mimic Observed at Atomic Resolution.
J Am Chem Soc. 2016 Jul 20;138(28):8802-8. doi: 10.1021/jacs.6b03681. Epub 2016 Jul 5.
4
Toward an understanding of the retinal chromophore in rhodopsin mimics.
J Phys Chem B. 2013 Sep 5;117(35):10053-70. doi: 10.1021/jp305935t. Epub 2013 Aug 26.
5
Protein design: reengineering cellular retinoic acid binding protein II into a rhodopsin protein mimic.
J Am Chem Soc. 2007 May 16;129(19):6140-8. doi: 10.1021/ja067546r. Epub 2007 Apr 21.
6
X-ray crystallographic identification of a protein-binding site for both all-trans- and 9-cis-retinoic acid.
Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):9223-7. doi: 10.1073/pnas.90.19.9223.
7
Energy transduction on the nanosecond time scale: early structural events in a xanthopsin photocycle.
Science. 1998 Mar 20;279(5358):1946-50. doi: 10.1126/science.279.5358.1946.
8
Diastereoselective functionalization of Baylis-Hillman adducts: a convenient approach to alpha-methyl-alpha-amino acids.
Amino Acids. 2010 Jul;39(2):489-97. doi: 10.1007/s00726-009-0465-y. Epub 2010 Mar 6.

引用本文的文献

2
Morita-Baylis-Hillman Adduct Chemistry as a Tool for the Design of Lysine-Targeted Covalent Ligands.
ACS Med Chem Lett. 2025 Feb 28;16(3):397-405. doi: 10.1021/acsmedchemlett.4c00479. eCollection 2025 Mar 13.
5
Design, synthesis and biological evaluation of light-driven on-off multitarget AChE and MAO-B inhibitors.
RSC Med Chem. 2022 Jun 1;13(7):873-883. doi: 10.1039/d2md00042c. eCollection 2022 Jul 20.

本文引用的文献

1
Poly-histidine grafting leading to fishbone-like architectures.
RSC Adv. 2018 Feb 26;8(16):8638-8656. doi: 10.1039/c8ra00315g. eCollection 2018 Feb 23.
2
Femtosecond-to-millisecond structural changes in a light-driven sodium pump.
Nature. 2020 Jul;583(7815):314-318. doi: 10.1038/s41586-020-2307-8. Epub 2020 May 20.
3
Computational and Spectroscopic Characterization of the Photocycle of an Artificial Rhodopsin.
J Phys Chem Lett. 2020 Jun 4;11(11):4245-4252. doi: 10.1021/acs.jpclett.0c00751. Epub 2020 May 13.
4
Electrostatic control of photoisomerization pathways in proteins.
Science. 2020 Jan 3;367(6473):76-79. doi: 10.1126/science.aax1898.
5
Machine learning-guided channelrhodopsin engineering enables minimally invasive optogenetics.
Nat Methods. 2019 Nov;16(11):1176-1184. doi: 10.1038/s41592-019-0583-8. Epub 2019 Oct 14.
6
Development of Imidazole-Reactive Molecules Leading to a New Aggregation-Induced Emission Fluorophore Based on the Cinnamic Scaffold.
ACS Omega. 2017 Sep 6;2(9):5453-5459. doi: 10.1021/acsomega.7b00789. eCollection 2017 Sep 30.
7
Synthesis, spectroscopy and QM/MM simulations of a biomimetic ultrafast light-driven molecular motor.
Photochem Photobiol Sci. 2019 Sep 1;18(9):2259-2269. doi: 10.1039/c9pp00223e. Epub 2019 Jul 26.
8
Three-dimensional view of ultrafast dynamics in photoexcited bacteriorhodopsin.
Nat Commun. 2019 Jul 18;10(1):3177. doi: 10.1038/s41467-019-10758-0.
9
Bile Acid Binding Protein Functionalization Leads to a Fully Synthetic Rhodopsin Mimic.
J Phys Chem Lett. 2019 May 2;10(9):2235-2243. doi: 10.1021/acs.jpclett.9b00210. Epub 2019 Apr 22.
10
Concepts of Catalysis in Site-Selective Protein Modifications.
J Am Chem Soc. 2019 May 22;141(20):8005-8013. doi: 10.1021/jacs.8b13187. Epub 2019 Apr 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验