Manathunga Madushanka, Jenkins Adam J, Orozco-Gonzalez Yoelvis, Ghanbarpour Alireza, Borhan Babak, Geiger James H, Larsen Delmar S, Olivucci Massimo
Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States.
Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States.
J Phys Chem Lett. 2020 Jun 4;11(11):4245-4252. doi: 10.1021/acs.jpclett.0c00751. Epub 2020 May 13.
The photocycle of a reversible photoisomerizing rhodopsin mimic (M2) is investigated. This system, based on the cellular retinoic acid binding protein, is structurally different from natural rhodopsin systems, but exhibits a similar isomerization upon light irradiation. More specifically, M2 displays a 15- to - conversion of retinal protonated Schiff base (rPSB) and - to 15- isomerization of unprotonated Schiff base (rUSB). Here we use hybrid quantum mechanics/molecular mechanics (QM/MM) tools coupled with transient absorption and cryokinetic UV-vis spectroscopies to investigate these isomerization processes. The results suggest that primary rPSB photoisomerization of M2 occurs around the C13═C14 double bond within 2 ps following an aborted-bicycle pedal (ABP) isomerization mechanism similar to natural microbial rhodopsins. The rUSB isomerization is much slower and occurs within 48 ps around the C15═N double bond. Our findings reveal the possibility to engineer naturally occurring mechanistic features into artificial rhodopsins and also constitute a step toward understanding the photoisomerization of UV pigments. We conclude by reinforcing the idea that the presence of the retinal chromophore inside a tight protein cavity is not mandatory to exhibit ABP mechanism.
对一种可逆光异构化视紫红质模拟物(M2)的光循环进行了研究。该系统基于细胞视黄酸结合蛋白,在结构上与天然视紫红质系统不同,但在光照下表现出类似的异构化。更具体地说,M2显示出视网膜质子化席夫碱(rPSB)的15 - 到 - 异构化以及未质子化席夫碱(rUSB)的 - 到15 - 异构化。在这里,我们使用混合量子力学/分子力学(QM/MM)工具结合瞬态吸收和低温动力学紫外 - 可见光谱来研究这些异构化过程。结果表明,M2的初级rPSB光异构化在2皮秒内发生在C13═C14双键周围,遵循类似于天然微生物视紫红质的“中断自行车踏板”(ABP)异构化机制。rUSB异构化要慢得多,在48皮秒内发生在C15═N双键周围。我们的研究结果揭示了将天然存在的机制特征引入人工视紫红质的可能性,也朝着理解紫外色素的光异构化迈出了一步。我们通过强化这样一种观点来得出结论,即在紧密的蛋白质腔体内存在视黄醛发色团并非表现出ABP机制的必要条件。