Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
Stanford Synchrotron Radiation Lightsource, Menlo Park, CA 94025, USA.
Science. 2020 Jan 3;367(6473):76-79. doi: 10.1126/science.aax1898.
Rotation around a specific bond after photoexcitation is central to vision and emerging opportunities in optogenetics, super-resolution microscopy, and photoactive molecular devices. Competing roles for steric and electrostatic effects that govern bond-specific photoisomerization have been widely discussed, the latter originating from chromophore charge transfer upon excitation. We systematically altered the electrostatic properties of the green fluorescent protein chromophore in a photoswitchable variant, Dronpa2, using amber suppression to introduce electron-donating and electron-withdrawing groups to the phenolate ring. Through analysis of the absorption (color), fluorescence quantum yield, and energy barriers to ground- and excited-state isomerization, we evaluate the contributions of sterics and electrostatics quantitatively and demonstrate how electrostatic effects bias the pathway of chromophore photoisomerization, leading to a generalized framework to guide protein design.
光激发后围绕特定键的旋转对于视觉以及在基因光学技术、超分辨率显微镜和光活性分子器件方面的新兴机遇至关重要。控制键特异性光异构化的空间位阻和静电效应的竞争作用已被广泛讨论,后者源于激发时发色团的电荷转移。我们使用琥珀酸抑制在可光开关的 Dronpa2 变体中系统地改变绿色荧光蛋白发色团的静电特性,从而在苯并恶唑环上引入供电子和吸电子基团。通过对吸收(颜色)、荧光量子产率和基态和激发态异构化的能垒进行分析,我们定量评估了空间位阻和静电的贡献,并展示了静电效应对发色团光异构化途径的影响,从而为指导蛋白质设计提供了一个通用框架。