Suppr超能文献

蛋白质中光致异构化途径的静电控制。

Electrostatic control of photoisomerization pathways in proteins.

机构信息

Department of Chemistry, Stanford University, Stanford, CA 94305, USA.

Stanford Synchrotron Radiation Lightsource, Menlo Park, CA 94025, USA.

出版信息

Science. 2020 Jan 3;367(6473):76-79. doi: 10.1126/science.aax1898.

Abstract

Rotation around a specific bond after photoexcitation is central to vision and emerging opportunities in optogenetics, super-resolution microscopy, and photoactive molecular devices. Competing roles for steric and electrostatic effects that govern bond-specific photoisomerization have been widely discussed, the latter originating from chromophore charge transfer upon excitation. We systematically altered the electrostatic properties of the green fluorescent protein chromophore in a photoswitchable variant, Dronpa2, using amber suppression to introduce electron-donating and electron-withdrawing groups to the phenolate ring. Through analysis of the absorption (color), fluorescence quantum yield, and energy barriers to ground- and excited-state isomerization, we evaluate the contributions of sterics and electrostatics quantitatively and demonstrate how electrostatic effects bias the pathway of chromophore photoisomerization, leading to a generalized framework to guide protein design.

摘要

光激发后围绕特定键的旋转对于视觉以及在基因光学技术、超分辨率显微镜和光活性分子器件方面的新兴机遇至关重要。控制键特异性光异构化的空间位阻和静电效应的竞争作用已被广泛讨论,后者源于激发时发色团的电荷转移。我们使用琥珀酸抑制在可光开关的 Dronpa2 变体中系统地改变绿色荧光蛋白发色团的静电特性,从而在苯并恶唑环上引入供电子和吸电子基团。通过对吸收(颜色)、荧光量子产率和基态和激发态异构化的能垒进行分析,我们定量评估了空间位阻和静电的贡献,并展示了静电效应对发色团光异构化途径的影响,从而为指导蛋白质设计提供了一个通用框架。

相似文献

1
Electrostatic control of photoisomerization pathways in proteins.
Science. 2020 Jan 3;367(6473):76-79. doi: 10.1126/science.aax1898.
2
Chromophore protonation state controls photoswitching of the fluoroprotein asFP595.
PLoS Comput Biol. 2008 Mar 21;4(3):e1000034. doi: 10.1371/journal.pcbi.1000034.
3
Excited-State Intramolecular Proton Transfer in a Blue Fluorescence Chromophore Induces Dual Emission.
Chemphyschem. 2016 Aug 4;17(15):2340-7. doi: 10.1002/cphc.201600386. Epub 2016 May 11.
4
Computational analysis of Thr203 isomerization in green fluorescent protein.
J Mol Graph Model. 2001;19(3-4):297-303. doi: 10.1016/s1093-3263(00)00057-7.
5
Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein.
Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2306-11. doi: 10.1073/pnas.94.6.2306.
6
Isomerization mechanism of the HcRed fluorescent protein chromophore.
Phys Chem Chem Phys. 2012 Aug 28;14(32):11413-24. doi: 10.1039/c2cp41217a. Epub 2012 Jul 16.

引用本文的文献

2
A twisted chromophore powers a turn-on fluorescent protein chloride sensor.
Proc Natl Acad Sci U S A. 2025 Aug 12;122(32):e2508094122. doi: 10.1073/pnas.2508094122. Epub 2025 Aug 5.
3
Modulating the pH dependent photophysical properties of green fluorescent protein.
RSC Adv. 2024 Oct 17;14(44):32284-32291. doi: 10.1039/d4ra05058d. eCollection 2024 Oct 9.
4
XFEL Beamline Optical Instrumentation for Ultrafast Science.
J Phys Chem B. 2024 Sep 19;128(37):8855-8868. doi: 10.1021/acs.jpcb.4c01492. Epub 2024 Aug 1.
5
The β-subunit of tryptophan synthase is a latent tyrosine synthase.
Nat Chem Biol. 2024 Aug;20(8):1086-1093. doi: 10.1038/s41589-024-01619-z. Epub 2024 May 14.
6
Photoswitching the fluorescence of nanoparticles for advanced optical applications.
Chem Sci. 2024 Mar 25;15(17):6218-6228. doi: 10.1039/d4sc00114a. eCollection 2024 May 1.
7
9
Molecular mechanisms and evolutionary robustness of a color switch in proteorhodopsins.
Sci Adv. 2024 Jan 26;10(4):eadj0384. doi: 10.1126/sciadv.adj0384. Epub 2024 Jan 24.

本文引用的文献

1
Unified Model for Photophysical and Electro-Optical Properties of Green Fluorescent Proteins.
J Am Chem Soc. 2019 Sep 25;141(38):15250-15265. doi: 10.1021/jacs.9b07152. Epub 2019 Sep 11.
2
Electrostatic Influence on Photoisomerization in Bacteriorhodopsin and Halorhodopsin.
J Phys Chem B. 2019 Jun 13;123(23):4850-4857. doi: 10.1021/acs.jpcb.9b01837. Epub 2019 May 31.
3
Fluorescence Enhancement of a Microbial Rhodopsin via Electronic Reprogramming.
J Am Chem Soc. 2019 Jan 9;141(1):262-271. doi: 10.1021/jacs.8b09311. Epub 2018 Dec 28.
4
Systematic Excited State Studies of Reversibly Switchable Fluorescent Proteins.
J Chem Theory Comput. 2018 Jun 12;14(6):3163-3172. doi: 10.1021/acs.jctc.8b00050. Epub 2018 May 29.
5
Optogenetics: A Primer for Chemists.
Chembiochem. 2018 Jun 18;19(12):1201-1216. doi: 10.1002/cbic.201800013. Epub 2018 May 14.
6
Theory and Simulation of the Ultrafast Double-Bond Isomerization of Biological Chromophores.
Chem Rev. 2017 Nov 22;117(22):13502-13565. doi: 10.1021/acs.chemrev.7b00177. Epub 2017 Oct 30.
7
Designing logical codon reassignment - Expanding the chemistry in biology.
Chem Sci. 2015 Jan 1;6(1):50-69. doi: 10.1039/c4sc01534g. Epub 2014 Jul 14.
8
Mechanism and bottlenecks in strand photodissociation of split green fluorescent proteins (GFPs).
Proc Natl Acad Sci U S A. 2017 Mar 14;114(11):E2146-E2155. doi: 10.1073/pnas.1618087114. Epub 2017 Feb 27.
9
Photoinduced Chemistry in Fluorescent Proteins: Curse or Blessing?
Chem Rev. 2017 Jan 25;117(2):758-795. doi: 10.1021/acs.chemrev.6b00238. Epub 2016 Oct 18.
10
Electric Field Keeps Chromophore Planar and Produces High Yield Fluorescence in Green Fluorescent Protein.
J Am Chem Soc. 2016 Oct 19;138(41):13619-13629. doi: 10.1021/jacs.6b06833. Epub 2016 Oct 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验