Suppr超能文献

使用双峰原子力显微镜从聚合物表面的纳米级图谱中区分粘附力和粘弹性。

Discrimination of adhesion and viscoelasticity from nanoscale maps of polymer surfaces using bimodal atomic force microscopy.

作者信息

Rajabifar Bahram, Bajaj Anil, Reifenberger Ronald, Proksch Roger, Raman Arvind

机构信息

School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA.

Birck Nanotechnology Center, 1205 W State Street, West Lafayette, IN 47907, USA.

出版信息

Nanoscale. 2021 Oct 28;13(41):17428-17441. doi: 10.1039/d1nr03437e.

Abstract

The simultaneous excitation and measurement of two eigenmodes in bimodal atomic force microscopy (AFM) during sub-micron scale surface imaging augments the number of observables at each pixel of the image compared to the normal tapping mode. However, a comprehensive connection between the bimodal AFM observables and the surface adhesive and viscoelastic properties of polymer samples remains elusive. To address this gap, we first propose an algorithm that systematically accommodates surface forces and linearly viscoelastic three-dimensional deformation computed Attard's model into the bimodal AFM framework. The proposed algorithm simultaneously satisfies the amplitude reduction formulas for both resonant eigenmodes and enables the rigorous prediction and interpretation of bimodal AFM observables with a first-principles approach. We used the proposed algorithm to predict the dependence of bimodal AFM observables on local adhesion and standard linear solid (SLS) constitutive parameters as well as operating conditions. Secondly, we present an inverse method to quantitatively predict the local adhesion and SLS viscoelastic parameters from bimodal AFM data acquired on a heterogeneous sample. We demonstrate the method experimentally using bimodal AFM on polystyrene-low density polyethylene (PS-LDPE) polymer blend. This inverse method enables the quantitative discrimination of adhesion and viscoelastic properties from bimodal AFM maps of such samples and opens the door for advanced computational interaction models to be used to quantify local nanomechanical properties of adhesive, viscoelastic materials using bimodal AFM.

摘要

在亚微米尺度表面成像过程中,双峰原子力显微镜(AFM)对两种本征模式的同时激发和测量,相比于常规轻敲模式,增加了图像每个像素处的可观测数量。然而,双峰AFM可观测值与聚合物样品的表面粘附和粘弹性性质之间的全面联系仍然难以捉摸。为了填补这一空白,我们首先提出一种算法,该算法系统地将表面力和根据阿塔德模型计算的线性粘弹性三维变形纳入双峰AFM框架。所提出的算法同时满足两种共振本征模式的振幅降低公式,并能够用第一性原理方法对双峰AFM可观测值进行严格的预测和解释。我们使用所提出的算法来预测双峰AFM可观测值对局部粘附力、标准线性固体(SLS)本构参数以及操作条件的依赖性。其次,我们提出一种反演方法,用于从在异质样品上采集的双峰AFM数据中定量预测局部粘附力和SLS粘弹性参数。我们使用双峰AFM对聚苯乙烯 - 低密度聚乙烯(PS - LDPE)聚合物共混物进行实验演示了该方法。这种反演方法能够从这类样品的双峰AFM图中定量区分粘附和粘弹性性质,并为使用双峰AFM量化粘性、粘弹性材料的局部纳米力学性质的先进计算相互作用模型打开了大门。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验