Suppr超能文献

利用双模态原子力显微镜快速、高分辨率地绘制生物分子和聚合物的弹性性质图谱。

Fast and high-resolution mapping of elastic properties of biomolecules and polymers with bimodal AFM.

机构信息

Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, Spain.

出版信息

Nat Protoc. 2018 Dec;13(12):2890-2907. doi: 10.1038/s41596-018-0070-1.

Abstract

Fast, high-resolution mapping of heterogeneous interfaces with a wide elastic modulus range is a major goal of atomic force microscopy (AFM). This goal becomes more challenging when the nanomechanical mapping involves biomolecules in their native environment. Over the years, several AFM-based methods have been developed to address this goal. However, none of these methods combine sub-nanometer spatial resolution, quantitative accuracy, fast data acquisition speed, wide elastic modulus range and operation in physiological solutions. Here, we present detailed procedures for generating high-resolution maps of the elastic properties of biomolecules and polymers using bimodal AFM. This requires the simultaneous excitation of the first two eigenmodes of the cantilever. An amplitude modulation (AM) feedback acting on the first mode controls the tip-sample distance, and a frequency modulation (FM) feedback acts on the second mode. The method is fast because the elastic modulus, deformation and topography images are obtained simultaneously. The method is efficient because only a single data point per pixel is needed to generate the aforementioned images. The main stages of the bimodal imaging are sample preparation, calibration of the instrument, tuning of the microscope and generation of the nanomechanical maps. In addition, with knowledge of the deformation, bimodal AFM enables reconstruction of the true topography of the surface. It takes ~9 h to complete the whole procedure.

摘要

快速、高分辨率地绘制具有广泛弹性模量范围的异质界面是原子力显微镜(AFM)的主要目标。当纳米力学映射涉及到天然环境中的生物分子时,这个目标变得更加具有挑战性。多年来,已经开发了几种基于 AFM 的方法来解决这个目标。然而,这些方法都没有结合亚纳米空间分辨率、定量准确性、快速数据采集速度、广泛的弹性模量范围以及在生理溶液中的操作。在这里,我们介绍了使用双模态 AFM 生成生物分子和聚合物弹性特性高分辨率图谱的详细步骤。这需要同时激发悬臂的前两个本征模式。作用于第一模式的振幅调制(AM)反馈控制针尖-样品距离,而作用于第二模式的频率调制(FM)反馈。该方法速度很快,因为弹性模量、变形和形貌图像是同时获得的。该方法效率很高,因为生成上述图像只需要每个像素一个数据点。双模态成像的主要阶段包括样品制备、仪器校准、显微镜调谐和纳米力学图谱生成。此外,通过对变形的了解,双模态 AFM 可以重建表面的真实形貌。整个过程大约需要 9 个小时。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验