Suppr超能文献

基于围手术期因素通过机器学习预测非心脏手术后心肌损伤患者的死亡率:一项回顾性研究

Predictability of Mortality in Patients With Myocardial Injury After Noncardiac Surgery Based on Perioperative Factors via Machine Learning: Retrospective Study.

作者信息

Shin Seo Jeong, Park Jungchan, Lee Seung-Hwa, Yang Kwangmo, Park Rae Woong

机构信息

Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea.

Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.

出版信息

JMIR Med Inform. 2021 Oct 14;9(10):e32771. doi: 10.2196/32771.

Abstract

BACKGROUND

Myocardial injury after noncardiac surgery (MINS) is associated with increased postoperative mortality, but the relevant perioperative factors that contribute to the mortality of patients with MINS have not been fully evaluated.

OBJECTIVE

To establish a comprehensive body of knowledge relating to patients with MINS, we researched the best performing predictive model based on machine learning algorithms.

METHODS

Using clinical data from 7629 patients with MINS from the clinical data warehouse, we evaluated 8 machine learning algorithms for accuracy, precision, recall, F1 score, area under the receiver operating characteristic (AUROC) curve, and area under the precision-recall curve to investigate the best model for predicting mortality. Feature importance and Shapley Additive Explanations values were analyzed to explain the role of each clinical factor in patients with MINS.

RESULTS

Extreme gradient boosting outperformed the other models. The model showed an AUROC of 0.923 (95% CI 0.916-0.930). The AUROC of the model did not decrease in the test data set (0.894, 95% CI 0.86-0.922; P=.06). Antiplatelet drugs prescription, elevated C-reactive protein level, and beta blocker prescription were associated with reduced 30-day mortality.

CONCLUSIONS

Predicting the mortality of patients with MINS was shown to be feasible using machine learning. By analyzing the impact of predictors, markers that should be cautiously monitored by clinicians may be identified.

摘要

背景

非心脏手术后心肌损伤(MINS)与术后死亡率增加相关,但导致MINS患者死亡的围手术期相关因素尚未得到充分评估。

目的

为了建立关于MINS患者的全面知识体系,我们基于机器学习算法研究了性能最佳的预测模型。

方法

利用临床数据仓库中7629例MINS患者的临床数据,我们评估了8种机器学习算法的准确性、精确性、召回率、F1分数、受试者工作特征曲线下面积(AUROC)以及精确召回率曲线下面积,以研究预测死亡率的最佳模型。分析特征重要性和夏普利值来解释每个临床因素在MINS患者中的作用。

结果

极端梯度提升算法优于其他模型。该模型的AUROC为0.923(95%CI 0.916-0.930)。该模型在测试数据集中的AUROC没有下降(0.894,95%CI 0.86-0.922;P=0.06)。抗血小板药物处方、C反应蛋白水平升高和β受体阻滞剂处方与30天死亡率降低相关。

结论

使用机器学习预测MINS患者的死亡率是可行的。通过分析预测因素的影响,可以确定临床医生应谨慎监测的指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49cc/8554678/55e2e3711c9b/medinform_v9i10e32771_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验