Suppr超能文献

基于机器学习的非心脏手术后心肌损伤预测模型。

Prediction model for myocardial injury after non-cardiac surgery using machine learning.

机构信息

Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.

Department of Anesthesiology and Pain Medicine, Kangwon National University Hospital, Chuncheon, Korea.

出版信息

Sci Rep. 2023 Jan 26;13(1):1475. doi: 10.1038/s41598-022-26617-w.

Abstract

Myocardial injury after non-cardiac surgery (MINS) is strongly associated with postoperative outcomes. We developed a prediction model for MINS and have provided it online. Between January 2010 and June 2019, a total of 6811 patients underwent non-cardiac surgery with normal preoperative level of cardiac troponin (cTn). We used machine learning techniques with an extreme gradient boosting algorithm to evaluate the effects of variables on MINS development. We generated two prediction models based on the top 12 and 6 variables. MINS was observed in 1499 (22.0%) patients. The top 12 variables in descending order according to the effects on MINS are preoperative cTn level, intraoperative inotropic drug infusion, operation duration, emergency operation, operation type, age, high-risk surgery, body mass index, chronic kidney disease, coronary artery disease, intraoperative red blood cell transfusion, and current alcoholic use. The prediction models are available at https://sjshin.shinyapps.io/mins_occur_prediction/ . The estimated thresholds were 0.47 in 12-variable models and 0.53 in 6-variable models. The areas under the receiver operating characteristic curves are 0.78 (95% confidence interval [CI] 0.77-0.78) and 0.77 (95% CI 0.77-0.78), respectively, with an accuracy of 0.97 for both models. Using machine learning techniques, we demonstrated prediction models for MINS. These models require further verification in other populations.

摘要

非心脏手术后心肌损伤(MINS)与术后结果密切相关。我们开发了一种用于 MINS 的预测模型,并已在线提供。2010 年 1 月至 2019 年 6 月期间,共有 6811 例术前心脏肌钙蛋白(cTn)水平正常的患者接受了非心脏手术。我们使用机器学习技术和极端梯度提升算法来评估变量对 MINS 发展的影响。我们基于前 12 个和 6 个变量生成了两个预测模型。共有 1499 例(22.0%)患者发生 MINS。根据对 MINS 的影响程度,前 12 个变量依次为术前 cTn 水平、术中正性肌力药物输注、手术时间、急诊手术、手术类型、年龄、高危手术、体重指数、慢性肾脏病、冠状动脉疾病、术中红细胞输注和当前饮酒。预测模型可在 https://sjshin.shinyapps.io/mins_occur_prediction/ 获得。在 12 变量模型中,估计阈值为 0.47,在 6 变量模型中为 0.53。接受者操作特征曲线下的面积分别为 0.78(95%置信区间 [CI] 0.77-0.78)和 0.77(95% CI 0.77-0.78),两个模型的准确率均为 0.97。我们使用机器学习技术展示了 MINS 的预测模型。这些模型需要在其他人群中进一步验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4535/9879966/2de7598050f9/41598_2022_26617_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验