Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands.
Mol Nutr Food Res. 2021 Dec;65(23):e2100443. doi: 10.1002/mnfr.202100443. Epub 2021 Oct 25.
The aim of the present study is to develop physiologically-based kinetic (PBK) models for rat and human that include intestinal microbial and hepatic metabolism of zearalenone (ZEN) in order to predict systemic concentrations of ZEN and to obtain insight in the contribution of metabolism by the intestinal microbiota to the overall metabolism of ZEN.
In vitro derived kinetic parameters, apparent maximum velocities (V ) and Michaelis-Menten constants (K ) for liver and intestinal microbial metabolism of ZEN are included in the PBK models. The models include a sub-model for the metabolite, α-zearalenol (α-ZEL), a metabolite known to be 60-times more potent as an estrogen than ZEN. Integrating intestinal microbial ZEN metabolism into the PBK models revealed that hepatic metabolism drives the formation of α-ZEL. Furthermore, the models predicted that at the tolerable daily intake (TDI) of 0.25 µg kg bw the internal concentration of ZEN and α-ZEL are three-orders of magnitude below concentrations reported to induce estrogenicity in vitro.
It is concluded that combining kinetic data on liver and intestinal microbial metabolism in a PBK model facilitates a holistic view on the role of the intestinal microbiota in the overall metabolism of the foodborne xenobiotic ZEN and its bioactivation to α-ZEL.
本研究旨在开发包括肠道微生物和肝脏对玉米赤霉烯酮(ZEN)代谢的生理相关的动力学(PBK)模型,以预测 ZEN 的系统浓度,并深入了解肠道微生物群对 ZEN 整体代谢的贡献。
将来源于体外的动力学参数,即肝脏和肠道微生物代谢 ZEN 的表观最大速率(V )和米氏常数(K ),纳入 PBK 模型中。该模型包括一种 ZEN 代谢物 α-玉米赤醇(α-ZEL)的亚模型,已知 α-ZEL 作为雌激素的效力比 ZEN 强 60 倍。将肠道微生物 ZEN 代谢纳入 PBK 模型表明,肝脏代谢驱动了 α-ZEL 的形成。此外,模型预测,在可耐受每日摄入量(TDI)为 0.25μg/kg bw 的情况下,ZEN 和 α-ZEL 的体内浓度比体外报道的诱导雌激素的浓度低三个数量级。
综上所述,将肝脏和肠道微生物代谢的动力学数据纳入 PBK 模型,有助于全面了解肠道微生物群在食物源外源性污染物 ZEN 及其生物激活为 α-ZEL 的整体代谢中的作用。