Suppr超能文献

行为期间海马轴突-轴突细胞的募集和抑制作用。

Recruitment and inhibitory action of hippocampal axo-axonic cells during behavior.

机构信息

Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA.

Department of Neuroscience, Columbia University, New York, NY 10027, USA.

出版信息

Neuron. 2021 Dec 1;109(23):3838-3850.e8. doi: 10.1016/j.neuron.2021.09.033. Epub 2021 Oct 13.

Abstract

The axon initial segment of hippocampal pyramidal cells is a key subcellular compartment for action potential generation, under GABAergic control by the "chandelier" or axo-axonic cells (AACs). Although AACs are the only cellular source of GABA targeting the initial segment, their in vivo activity patterns and influence over pyramidal cell dynamics are not well understood. We achieved cell-type-specific genetic access to AACs in mice and show that AACs in the hippocampal area CA1 are synchronously activated by episodes of locomotion or whisking during rest. Bidirectional intervention experiments in head-restrained mice performing a random foraging task revealed that AACs inhibit CA1 pyramidal cells, indicating that the effect of GABA on the initial segments in the hippocampus is inhibitory in vivo. Finally, optogenetic inhibition of AACs at specific track locations induced remapping of pyramidal cell place fields. These results demonstrate brain-state-specific dynamics of a critical inhibitory controller of cortical circuits.

摘要

海马锥体神经元的轴突起始段是动作电位产生的关键亚细胞区室,受 GABA 能“叉头状细胞”或轴突-轴突细胞(AACs)的控制。尽管 AACs 是唯一靶向初始段的 GABA 细胞来源,但它们在体内的活动模式及其对锥体细胞动力学的影响尚不清楚。我们在小鼠中实现了对 AAC 的细胞类型特异性基因访问,并显示海马区 CA1 的 AACs 在休息时的运动或胡须抽动的片段中被同步激活。在执行随机觅食任务的头部固定小鼠中进行的双向干预实验表明,AACs 抑制 CA1 锥体细胞,表明 GABA 对海马体初始段的影响在体内是抑制性的。最后,在特定轨迹位置的光遗传学抑制 AACs 诱导了锥体细胞位置场的重新映射。这些结果证明了皮质回路关键抑制控制器的大脑状态特异性动力学。

相似文献

1
Recruitment and inhibitory action of hippocampal axo-axonic cells during behavior.
Neuron. 2021 Dec 1;109(23):3838-3850.e8. doi: 10.1016/j.neuron.2021.09.033. Epub 2021 Oct 13.
3
Activity-Dependent Plasticity of Axo-axonic Synapses at the Axon Initial Segment.
Neuron. 2020 Apr 22;106(2):265-276.e6. doi: 10.1016/j.neuron.2020.01.037. Epub 2020 Feb 27.
4
Network state-dependent inhibition of identified hippocampal CA3 axo-axonic cells in vivo.
Nat Neurosci. 2013 Dec;16(12):1802-1811. doi: 10.1038/nn.3550. Epub 2013 Oct 20.
5
Physiological properties of anatomically identified axo-axonic cells in the rat hippocampus.
J Neurophysiol. 1994 Apr;71(4):1289-307. doi: 10.1152/jn.1994.71.4.1289.
7
Temporal redistribution of inhibition over neuronal subcellular domains underlies state-dependent rhythmic change of excitability in the hippocampus.
Philos Trans R Soc Lond B Biol Sci. 2013 Dec 23;369(1635):20120518. doi: 10.1098/rstb.2012.0518. Print 2014 Feb 5.
8
Identified axo-axonic cells are immunoreactive for GABA in the hippocampus and visual cortex of the cat.
Brain Res. 1985 Apr 15;332(1):143-9. doi: 10.1016/0006-8993(85)90397-x.
9
Lighting the chandelier: new vistas for axo-axonic cells.
Trends Neurosci. 2005 Jun;28(6):310-6. doi: 10.1016/j.tins.2005.04.004.
10
Excitatory effect of GABAergic axo-axonic cells in cortical microcircuits.
Science. 2006 Jan 13;311(5758):233-5. doi: 10.1126/science.1121325.

引用本文的文献

1
Predictive goal coding by dentate gyrus somatostatin-expressing interneurons in male mice.
Nat Commun. 2025 Jun 25;16(1):5382. doi: 10.1038/s41467-025-60841-y.
2
Hippocampal Interneurons Shape Spatial Coding Alterations in Neurological Disorders.
Mol Neurobiol. 2025 May 20. doi: 10.1007/s12035-025-05020-2.
3
Regulation of perisomatic synapses from cholecystokinin basket interneurons through NrCAM and Ankyrin B.
Curr Res Neurobiol. 2025 Apr 8;8:100150. doi: 10.1016/j.crneur.2025.100150. eCollection 2025 Jun.
4
Theory of axo-axonic inhibition.
PLoS Comput Biol. 2025 Apr 21;21(4):e1013047. doi: 10.1371/journal.pcbi.1013047. eCollection 2025 Apr.
5
Goal-specific hippocampal inhibition gates learning.
Nature. 2025 Apr 9. doi: 10.1038/s41586-025-08868-5.
6
Divergent opioid-mediated suppression of inhibition between hippocampus and neocortex across species and development.
Neuron. 2025 Jun 4;113(11):1805-1822.e7. doi: 10.1016/j.neuron.2025.03.005. Epub 2025 Mar 26.
8
Reciprocal interactions between CA1 pyramidal and axo-axonic cells control sharp wave-ripple events.
Res Sq. 2025 Feb 13:rs.3.rs-5844238. doi: 10.21203/rs.3.rs-5844238/v1.
10
GABAergic Progenitor Cell Graft Rescues Cognitive Deficits in Fragile X Syndrome Mice.
Adv Sci (Weinh). 2025 Mar;12(10):e2411972. doi: 10.1002/advs.202411972. Epub 2025 Jan 17.

本文引用的文献

1
A parameter-free statistical test for neuronal responsiveness.
Elife. 2021 Sep 27;10:e71969. doi: 10.7554/eLife.71969.
2
A database and deep learning toolbox for noise-optimized, generalized spike inference from calcium imaging.
Nat Neurosci. 2021 Sep;24(9):1324-1337. doi: 10.1038/s41593-021-00895-5. Epub 2021 Aug 2.
5
Alternating sources of perisomatic inhibition during behavior.
Neuron. 2021 Mar 17;109(6):997-1012.e9. doi: 10.1016/j.neuron.2021.01.003. Epub 2021 Feb 1.
6
Postnatal connectomic development of inhibition in mouse barrel cortex.
Science. 2021 Jan 29;371(6528). doi: 10.1126/science.abb4534. Epub 2020 Dec 3.
7
Large-Scale 3D Two-Photon Imaging of Molecularly Identified CA1 Interneuron Dynamics in Behaving Mice.
Neuron. 2020 Dec 9;108(5):968-983.e9. doi: 10.1016/j.neuron.2020.09.013. Epub 2020 Oct 5.
8
Shedding Light on Chandelier Cell Development, Connectivity, and Contribution to Neural Disorders.
Trends Neurosci. 2020 Aug;43(8):565-580. doi: 10.1016/j.tins.2020.05.003. Epub 2020 Jun 18.
9
A Role for the Locus Coeruleus in Hippocampal CA1 Place Cell Reorganization during Spatial Reward Learning.
Neuron. 2020 Mar 18;105(6):1018-1026.e4. doi: 10.1016/j.neuron.2019.12.029. Epub 2020 Jan 21.
10
Open source silicon microprobes for high throughput neural recording.
J Neural Eng. 2020 Jan 24;17(1):016036. doi: 10.1088/1741-2552/ab581a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验