文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于静电纺丝 PHBV 纤维的可生物降解 PHA 聚合物的发展及优势在组织工程和其他生物医学应用中的体现。

Development and Advantages of Biodegradable PHA Polymers Based on Electrospun PHBV Fibers for Tissue Engineering and Other Biomedical Applications.

机构信息

AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, al. A. Mickiewicza 30, 30-059 Kraków, Poland.

出版信息

ACS Biomater Sci Eng. 2021 Dec 13;7(12):5339-5362. doi: 10.1021/acsbiomaterials.1c00757. Epub 2021 Oct 14.


DOI:10.1021/acsbiomaterials.1c00757
PMID:34649426
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8672356/
Abstract

Biodegradable polymeric biomaterials offer a significant advantage in disposable or fast-consuming products in medical applications. Poly(3-hydroxybutyrate--3-hydroxyvalerate) (PHBV) is an example of a polyhydroxyalkanoate (PHA), i.e., one group of natural polyesters that are byproducts of reactions taking place in microorganisms in conditions with an excess carbon source. PHA polymers are a promising material for the production of everyday materials and biomedical applications. Due to the high number of monomers in the group, PHAs permit modifications enabling the production of copolymers of different compositions and with different proportions of individual monomers. In order to change and improve the properties of polymer fibers, PHAs are combined with either other natural and synthetic polymers or additives of inorganic phases. Importantly, electrospun PHBV fibers and mats showed an enormous potential in both the medical field (tissue engineering scaffolds, plasters, wound healing, drug delivery systems) and industrial applications (filter systems, food packaging). This Review summarizes the current state of the art in processing PHBV, especially by electrospinning, its degradation processes, and biocompatibility studies, starting from a general introduction to the PHA group of polymers.

摘要

可生物降解的聚合生物材料在医学应用中的一次性或快速消耗产品中具有显著优势。聚(3-羟基丁酸酯-3-羟基戊酸酯)(PHBV)是聚羟基烷酸酯(PHA)的一个例子,即在存在过量碳源的条件下,微生物反应的副产物之一。PHA 聚合物是生产日常材料和生物医学应用的有前途的材料。由于该组中的单体数量众多,PHA 允许进行修饰,从而能够生产不同组成的共聚物,并且各个单体的比例也不同。为了改变和改善聚合物纤维的性能,PHA 与其他天然和合成聚合物或无机相添加剂结合使用。重要的是,电纺 PHBV 纤维和垫在医学领域(组织工程支架、膏药、伤口愈合、药物输送系统)和工业应用(过滤系统、食品包装)中都显示出巨大的潜力。本综述从 PHA 聚合物组的一般介绍开始,总结了 PHBV 的当前加工技术,特别是静电纺丝、其降解过程和生物相容性研究的最新进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a19d/8672356/e60948007f82/ab1c00757_0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a19d/8672356/338b2ecfec24/ab1c00757_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a19d/8672356/896818f7ec3d/ab1c00757_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a19d/8672356/f9f5cce78596/ab1c00757_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a19d/8672356/a9c5ac830513/ab1c00757_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a19d/8672356/6e778d10590b/ab1c00757_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a19d/8672356/5879aa689f75/ab1c00757_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a19d/8672356/b3e268680e3a/ab1c00757_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a19d/8672356/bcffdabdbc80/ab1c00757_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a19d/8672356/51aefd5361bf/ab1c00757_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a19d/8672356/43b8f60844bb/ab1c00757_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a19d/8672356/a7c4ac47a61f/ab1c00757_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a19d/8672356/90a1a9e116a0/ab1c00757_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a19d/8672356/0b7a08f0b667/ab1c00757_0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a19d/8672356/d30d06e3a15f/ab1c00757_0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a19d/8672356/e60948007f82/ab1c00757_0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a19d/8672356/338b2ecfec24/ab1c00757_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a19d/8672356/896818f7ec3d/ab1c00757_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a19d/8672356/f9f5cce78596/ab1c00757_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a19d/8672356/a9c5ac830513/ab1c00757_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a19d/8672356/6e778d10590b/ab1c00757_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a19d/8672356/5879aa689f75/ab1c00757_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a19d/8672356/b3e268680e3a/ab1c00757_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a19d/8672356/bcffdabdbc80/ab1c00757_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a19d/8672356/51aefd5361bf/ab1c00757_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a19d/8672356/43b8f60844bb/ab1c00757_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a19d/8672356/a7c4ac47a61f/ab1c00757_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a19d/8672356/90a1a9e116a0/ab1c00757_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a19d/8672356/0b7a08f0b667/ab1c00757_0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a19d/8672356/d30d06e3a15f/ab1c00757_0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a19d/8672356/e60948007f82/ab1c00757_0015.jpg

相似文献

[1]
Development and Advantages of Biodegradable PHA Polymers Based on Electrospun PHBV Fibers for Tissue Engineering and Other Biomedical Applications.

ACS Biomater Sci Eng. 2021-12-13

[2]
Polyhydroxyalkanoates as biomaterial for electrospun scaffolds.

Int J Biol Macromol. 2018-11-13

[3]
Biomedical Applications of the Biopolymer Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV): Drug Encapsulation and Scaffold Fabrication.

Int J Mol Sci. 2023-7-19

[4]
Polyhydroxyalkanoate (PHA)/inorganic phase composites for tissue engineering applications.

Biomacromolecules. 2006-8

[5]
Shape Memory and Osteogenesis Capabilities of the Electrospun Poly(3-Hydroxybutyrate--3-Hydroxyvalerate) Modified Poly(l-Lactide) Fibrous Mats.

Tissue Eng Part A. 2021-1

[6]
Binary polyhydroxyalkanoate systems for soft tissue engineering.

Acta Biomater. 2018-3-2

[7]
The application of polyhydroxyalkanoates as tissue engineering materials.

Biomaterials. 2005-11

[8]
Effect of surfactant types on the biocompatibility of electrospun HAp/PHBV composite nanofibers.

J Mater Sci Mater Med. 2014-12

[9]
Emerging bone tissue engineering via Polyhydroxyalkanoate (PHA)-based scaffolds.

Mater Sci Eng C Mater Biol Appl. 2017-5-22

[10]
PHBV-TiO mats prepared by electrospinning technique: Physico-chemical properties and cytocompatibility.

Biopolymers. 2018-5

引用本文的文献

[1]
Investigation of Crystallization Kinetics in Polyhydroxyalkanoates through Hyperthermal Cycles.

ACS Polym Au. 2025-6-4

[2]
Metabolic Engineering Strategies for Enhanced Polyhydroxyalkanoate (PHA) Production in .

Polymers (Basel). 2025-7-31

[3]
PHA, the Greenest Plastic So Far: Advancing Microbial Synthesis, Recovery, and Sustainable Applications for Circularity.

ACS Omega. 2025-7-23

[4]
Multilayered Tissue Assemblies Through Tuneable Biodegradable Polyhydroxyalkanoate Polymer (Mesh)-Reinforced Organ-Derived Extracellular Matrix Hydrogels.

Gels. 2025-7-11

[5]
Bioconversion of food waste to poly (3-hydroxybutyrate-co-3-hydroxyvalerate) biopolymer using Stenotrophomonas geniculata: study of operating parameters and process optimization.

Biodegradation. 2025-7-5

[6]
Engineering Poly(lactic Acid)-Based Scaffolds for Abundant, Sustained, and Prolonged Lactate Release.

ACS Polym Au. 2025-3-25

[7]
Advanced Strategies for Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Production: PHA Synthase Homologous Overexpression in the Extremophile .

Mar Drugs. 2025-4-11

[8]
Effects of Polyhydroxybutyrate-co-hydroxyvalerate Microparticle Loading on Rheology, Microstructure, and Processability of Hydrogel-Based Inks for Bioprinted and Moulded Scaffolds.

Gels. 2025-3-14

[9]
Characterization and Biomedical Applications of Electrospun PHBV Scaffolds Derived from Organic Residues.

Int J Mol Sci. 2024-12-28

[10]
Enhancing the Potential of PHAs in Tissue Engineering Applications: A Review of Chemical Modification Methods.

Materials (Basel). 2024-11-27

本文引用的文献

[1]
Enhanced Cells Anchoring to Electrospun Hybrid Scaffolds With PHBV and HA Particles for Bone Tissue Regeneration.

Front Bioeng Biotechnol. 2021-2-17

[2]
Effects of Process Parameters on Structure and Properties of Melt-Blown Poly(Lactic Acid) Nonwovens for Skin Regeneration.

J Funct Biomater. 2021-2-26

[3]
Aromatic π-Conjugated Curcumin on Surface Modified Polyaniline/Polyhydroxyalkanoate Based 3D Porous Scaffolds for Tissue Engineering Applications.

ACS Biomater Sci Eng. 2016-12-12

[4]
Cerium Oxide Nanoparticle Incorporated Electrospun Poly(3-hydroxybutyrate--3-hydroxyvalerate) Membranes for Diabetic Wound Healing Applications.

ACS Biomater Sci Eng. 2020-1-13

[5]
Achieving Long-Term Sustained Drug Delivery for Electrospun Biopolyester Nanofibrous Membranes by Introducing Cellulose Nanocrystals.

ACS Biomater Sci Eng. 2017-8-14

[6]
Moisturizing effect of skin patches with hydrophobic and hydrophilic electrospun fibers for atopic dermatitis.

Colloids Surf B Biointerfaces. 2021-3

[7]
Surface-Potential-Controlled Cell Proliferation and Collagen Mineralization on Electrospun Polyvinylidene Fluoride (PVDF) Fiber Scaffolds for Bone Regeneration.

ACS Biomater Sci Eng. 2019-2-11

[8]
Electrospun PCL Patches with Controlled Fiber Morphology and Mechanical Performance for Skin Moisturization via Long-Term Release of Hemp Oil for Atopic Dermatitis.

Membranes (Basel). 2020-12-31

[9]
Recent Advances in the Regenerative Approaches for Traumatic Spinal Cord Injury: Materials Perspective.

ACS Biomater Sci Eng. 2020-12-14

[10]
Personalized Reusable Face Masks with Smart Nano-Assisted Destruction of Pathogens for COVID-19: A Visionary Road.

Chemistry. 2021-4-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索