Suppr超能文献

使用深度卷积神经网络自动识别超声中的三阴性乳腺癌。

Automatic identification of triple negative breast cancer in ultrasonography using a deep convolutional neural network.

机构信息

The MOE Key Laboratory of Modern Acoustics, Department of Physics, Nanjing University, Nanjing, 210093, China.

Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.

出版信息

Sci Rep. 2021 Oct 14;11(1):20474. doi: 10.1038/s41598-021-00018-x.

Abstract

Triple negative (TN) breast cancer is a subtype of breast cancer which is difficult for early detection and the prognosis is poor. In this paper, 910 benign and 934 malignant (110 TN and 824 NTN) B-mode breast ultrasound images were collected. A Resnet50 deep convolutional neural network was fine-tuned. The results showed that the averaged area under the receiver operating characteristic curve (AUC) of discriminating malignant from benign ones were 0.9789 (benign vs. TN), 0.9689 (benign vs. NTN). To discriminate TN from NTN breast cancer, the AUC was 0.9000, the accuracy was 88.89%, the sensitivity was 87.5%, and the specificity was 90.00%. It showed that the computer-aided system based on DCNN is expected to be a promising noninvasive clinical tool for ultrasound diagnosis of TN breast cancer.

摘要

三阴性乳腺癌是一种难以早期发现且预后较差的乳腺癌亚型。本文收集了 910 例良性和 934 例恶性(110 例 TN 和 824 例 NTN)B 型乳腺超声图像。经过微调 Resnet50 深度卷积神经网络。结果表明,判别良恶性的受试者工作特征曲线下面积(AUC)平均值分别为 0.9789(良性与 TN)、0.9689(良性与 NTN)。判别 TN 与 NTN 乳腺癌的 AUC 为 0.9000,准确率为 88.89%,灵敏度为 87.5%,特异性为 90.00%。这表明基于 DCNN 的计算机辅助系统有望成为一种有前途的超声诊断 TN 乳腺癌的无创临床工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验