Lee Taesam, Shin Ju-Young
Department of Civil Engineering, ERI, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam, 660-701, South Korea.
High-Impact Research Department, National Institute of Meteorological Sciences, Jeju, South Korea.
Sci Rep. 2021 Oct 14;11(1):20426. doi: 10.1038/s41598-021-99888-4.
The spatial interpolation of precipitation has been employed in a number of fields, including by spatially downscaling the Global Circulation Model (GCM) to a finer scale. Most precipitation events become more sporadic when the coverage area increases (i.e., a portion of the points experience zero precipitation). However, spatial interpolations of precipitation generally ignore these dry areas, and the interpolated grids are filled with certain precipitation amounts. Subsequently, no delineation of dry and wet regions can be made. Therefore, the current study suggested a novel approach to determine dry areas in spatial interpolations of precipitation events by assigning latent negative precipitation (LNP) to points with observed precipitation values of zero. The LNP-assigned points are then employed in a spatial interpolation. After that, the dry region can be determined using the negative region (i.e., points with zero precipitation). The magnitude of LNP can be defined by multiplying the precipitation values of neighboring stations by a tuning parameter. The LNP method and the tuning parameter are tested on weather stations covering South Korea. The results indicate that the proposed LNP method can be suitable for the spatial interpolation of precipitation events by delineating dry and wet regions. Additionally, the tuning parameter plays a special role in that it increases in value with longer precipitation durations and denser networks. A value of 0.5-1.5 can be suggested for the tuning parameter as a rule of thumb when high accuracy for final products of interpolated precipitation is not critical. For future studies, the LNP model derived herein can be tested over much larger areas, such as the United States, and the model can also be easily adopted for other variables with spatially sporadic values.
降水的空间插值已应用于许多领域,包括将全球环流模型(GCM)在空间上降尺度到更精细的尺度。当覆盖面积增加时,大多数降水事件变得更加分散(即部分点的降水量为零)。然而,降水的空间插值通常忽略这些干旱地区,并且插值网格被填充为一定的降水量。随后,无法划分干湿区域。因此,当前研究提出了一种新方法,通过为观测降水量值为零的点分配潜在负降水量(LNP)来确定降水事件空间插值中的干旱地区。然后将分配了LNP的点用于空间插值。之后,可以使用负区域(即降水量为零的点)来确定干旱地区。LNP的大小可以通过将相邻站点的降水量值乘以一个调整参数来定义。LNP方法和调整参数在覆盖韩国的气象站进行了测试。结果表明,所提出的LNP方法通过划分干湿区域可适用于降水事件的空间插值。此外,调整参数起着特殊作用,其值会随着降水持续时间的延长和网络密度的增加而增大。当对插值降水的最终产品精度要求不高时,作为经验法则,调整参数的值可以建议为0.5 - 1.5。对于未来的研究,本文推导的LNP模型可以在美国等更大的区域进行测试,并且该模型也可以很容易地应用于具有空间分散值的其他变量。