Koukuntla Sai, DeWeese Tate, Cheng Alexandra, Mildren Robyn, Lawrence Aamna, Graves Austin R, Colonell Jennifer, Harris Timothy D, Charles Adam S
Department of Biomedical Engineering, Johns Hopkins University.
Kavli Neurodiscovery Institute, Johns Hopkins University.
bioRxiv. 2025 Jun 25:2025.06.20.660590. doi: 10.1101/2025.06.20.660590.
The growing channel count of silicon probes has substantially increased the number of neurons recorded in electrophysiology (ephys) experiments, rendering traditional manual spike sorting impractical. Instead, modern ephys recordings are processed with automated methods that use waveform template matching to isolate putative single neurons. While scalable, automated methods are subject to assumptions that often fail to account for biophysical changes in action potential waveforms, leading to systematic errors. Consequently, manual curation of these errors, which is both time-consuming and lacks reproducibility, remains necessary. To improve efficiency and reproducibility in the spike-sorting pipeline, we introduce here the Spike-sorting Lapse Amelioration System (SLAy), an algorithm that automatically merges oversplit spike clusters. SLAy employs two novel metrics: (1) a waveform similarity metric that uses a neural network to obtain spatially informed, time-shift invariant low-dimensional waveform representations, and (2) a cross-correlogram significance metric based on the earth-mover's distance between the observed and null cross-correlograms. We demonstrate that SLAy achieves ~ 85% agreement with human curators across a diverse set of animal models, brain regions, and probe geometries. To illustrate the impact of spike sorting errors on downstream analyses, we develop a new burst-detection algorithm and show that SLAy fixes spike sorting errors that preclude the accurate detection of bursts in neural data. SLAy leverages GPU parallelization and multithreading for computational efficiency, and is compatible with Phy and NeuroData Without Borders, making it a practical and flexible solution for large-scale ephys data analysis.
硅基探针通道数的不断增加,极大地提高了电生理(ephys)实验中记录的神经元数量,使得传统的手动尖峰分类方法变得不切实际。取而代之的是,现代电生理记录采用自动化方法进行处理,这些方法利用波形模板匹配来分离假定的单个神经元。虽然自动化方法具有可扩展性,但它们基于一些假设,而这些假设往往无法考虑动作电位波形的生物物理变化,从而导致系统误差。因此,对这些误差进行人工处理仍然是必要的,然而这既耗时又缺乏可重复性。为了提高尖峰分类流程的效率和可重复性,我们在此引入尖峰分类失误改善系统(SLAy),这是一种能够自动合并过度分割的尖峰簇的算法。SLAy采用了两个新指标:(1)一种波形相似性指标,它使用神经网络来获得空间信息丰富、时间平移不变的低维波形表示;(2)一种基于观察到的互相关图与空互相关图之间的推土机距离的互相关图显著性指标。我们证明,在各种动物模型、脑区和探针几何形状中,SLAy与人工筛选的一致性达到了约85%。为了说明尖峰分类误差对下游分析的影响,我们开发了一种新的爆发检测算法,并表明SLAy能够修正那些妨碍准确检测神经数据中爆发的尖峰分类误差。SLAy利用GPU并行化和多线程来提高计算效率,并且与Phy和无国界神经数据兼容,使其成为大规模电生理数据分析的实用且灵活的解决方案。