Shuvo Maruf Hossain, Kassim Yasmin M, Bunyak Filiz, Glinskii Olga V, Xie Leike, Glinsky Vladislav V, Huxley Virginia H, Thakkar Mahesh M, Palaniappan Kannappan
Computational Imaging and VisAnalysis (CIVA) Lab, Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, MO 65211 USA.
Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, MO 65211 USA.
Proc IAPR Int Conf Pattern Recogn. 2021 Jan;2020:4317-4323. doi: 10.1109/icpr48806.2021.9412122. Epub 2021 May 5.
Characterizing the spatial relationship between blood vessel and lymphatic vascular structures, in the mice dura mater tissue, is useful for modeling fluid flows and changes in dynamics in various disease processes. We propose a new deep learning-based approach to fuse a set of multi-channel single-focus microscopy images within each volumetric z-stack into a single fused image that accurately captures as much of the vascular structures as possible. The red spectral channel captures small blood vessels and the green fluorescence channel images lymphatics structures in the intact dura mater attached to bone. The deep architecture Multi-Channel Fusion U-Net (MCFU-Net) combines multi-slice regression likelihood maps of thin linear structures using max pooling for each channel independently to estimate a slice-based focus selection map. We compare MCFU-Net with a widely used derivative-based multi-scale Hessian fusion method [8]. The multi-scale Hessian-based fusion produces dark-halos, non-homogeneous backgrounds and less detailed anatomical structures. Perception based no-reference image quality assessment metrics PIQUE, NIQE, and BRISQUE confirm the effectiveness of the proposed method.
表征小鼠硬脑膜组织中血管与淋巴管结构之间的空间关系,对于模拟各种疾病过程中的流体流动和动力学变化很有用。我们提出了一种基于深度学习的新方法,将每个体积z堆栈内的一组多通道单焦点显微镜图像融合成一个单一的融合图像,该图像能尽可能准确地捕捉血管结构。红色光谱通道捕捉小血管,绿色荧光通道对附着在骨头上的完整硬脑膜中的淋巴管结构成像。深度架构多通道融合U-Net(MCFU-Net)使用最大池化分别为每个通道组合薄线性结构的多层回归似然图,以估计基于切片的焦点选择图。我们将MCFU-Net与广泛使用的基于导数的多尺度Hessian融合方法[8]进行比较。基于多尺度Hessian的融合会产生暗晕、不均匀背景和不太详细的解剖结构。基于感知的无参考图像质量评估指标PIQUE、NIQE和BRISQUE证实了所提方法的有效性。