Suppr超能文献

用于多聚焦图像融合的全局特征编码U型网络(GEU-Net)

Global-Feature Encoding U-Net (GEU-Net) for Multi-Focus Image Fusion.

作者信息

Xiao Bin, Xu Bocheng, Bi Xiuli, Li Weisheng

出版信息

IEEE Trans Image Process. 2021;30:163-175. doi: 10.1109/TIP.2020.3033158. Epub 2020 Nov 18.

Abstract

The convolutional neural network (CNN)-based multi-focus image fusion methods which learn the focus map from the source images have greatly enhanced fusion performance compared with the traditional methods. However, these methods have not yet reached a satisfactory fusion result, since the convolution operation pays too much attention on the local region and generating the focus map as a local classification (classify each pixel into focus or de-focus classes) problem. In this article, a global-feature encoding U-Net (GEU-Net) is proposed for multi-focus image fusion. In the proposed GEU-Net, the U-Net network is employed for treating the generation of focus map as a global two-class segmentation task, which segments the focused and defocused regions from a global view. For improving the global feature encoding capabilities of U-Net, the global feature pyramid extraction module (GFPE) and global attention connection upsample module (GACU) are introduced to effectively extract and utilize the global semantic and edge information. The perceptual loss is added to the loss function, and a large-scale dataset is constructed for boosting the performance of GEU-Net. Experimental results show that the proposed GEU-Net can achieve superior fusion performance than some state-of-the-art methods in both human visual quality, objective assessment and network complexity.

摘要

与传统方法相比,基于卷积神经网络(CNN)的多聚焦图像融合方法通过从源图像中学习聚焦图,极大地提高了融合性能。然而,这些方法尚未达到令人满意的融合结果,因为卷积操作过于关注局部区域,并且将聚焦图生成视为一个局部分类(将每个像素分类为聚焦或散焦类别)问题。在本文中,提出了一种用于多聚焦图像融合的全局特征编码U-Net(GEU-Net)。在所提出的GEU-Net中,U-Net网络用于将聚焦图生成视为一个全局二分类分割任务,该任务从全局视角分割聚焦和散焦区域。为了提高U-Net的全局特征编码能力,引入了全局特征金字塔提取模块(GFPE)和全局注意力连接上采样模块(GACU),以有效地提取和利用全局语义和边缘信息。将感知损失添加到损失函数中,并构建一个大规模数据集以提升GEU-Net的性能。实验结果表明,所提出的GEU-Net在人类视觉质量、客观评估和网络复杂度方面都能比一些现有方法实现更优的融合性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验