Benzi Roberto, Divoux Thibaut, Barentin Catherine, Manneville Sébastien, Sbragaglia Mauro, Toschi Federico
Dipartimento di Fisica, Università di Roma "Tor Vergata" and INFN, Via della Ricerca Scientifica, 1-00133 Roma, Italy.
Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France.
Phys Rev Lett. 2021 Oct 1;127(14):148003. doi: 10.1103/PhysRevLett.127.148003.
Soft glassy materials such as mayonnaise, wet clays, or dense microgels display a solid-to-liquid transition under external shear. Such a shear-induced transition is often associated with a nonmonotonic stress response in the form of a stress maximum referred to as "stress overshoot." This ubiquitous phenomenon is characterized by the coordinates of the maximum in terms of stress σ_{M} and strain γ_{M} that both increase as weak power laws of the applied shear rate. Here we rationalize such power-law scalings using a continuum model that predicts two different regimes in the limit of low and high applied shear rates. The corresponding exponents are directly linked to the steady-state rheology and are both associated with the nucleation and growth dynamics of a fluidized region. Our work offers a consistent framework for predicting the transient response of soft glassy materials upon startup of shear from the local flow behavior to the global rheological observables.
诸如蛋黄酱、湿黏土或致密微凝胶之类的软玻璃态材料在外部剪切作用下会呈现从固态到液态的转变。这种剪切诱导转变通常与一种非单调应力响应相关联,其表现形式为应力最大值,即所谓的“应力超调”。这种普遍存在的现象的特征在于应力最大值σₘ和应变γₘ的坐标,它们均作为外加剪切速率的弱幂律函数而增加。在此,我们使用一个连续介质模型来解释这种幂律标度关系,该模型预测了在低和高外加剪切速率极限下的两种不同状态。相应的指数直接与稳态流变学相关联,并且都与流化区域的成核和生长动力学有关。我们的工作提供了一个连贯的框架,用于预测软玻璃态材料在剪切启动时从局部流动行为到整体流变可观测量的瞬态响应。