Suppr超能文献

利用动态聚合物-纳米粒子相互作用的物理交联纳米复合水凝胶中的极端可扩展性。

Extreme Extensibility in Physically Cross-Linked Nanocomposite Hydrogels Leveraging Dynamic Polymer-Nanoparticle Interactions.

作者信息

Grosskopf Abigail K, Mann Joseph L, Baillet Julie, Lopez Hernandez Hector, Autzen Anton A A, Yu Anthony C, Appel Eric A

机构信息

Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States.

Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States.

出版信息

Macromolecules. 2022 Sep 13;55(17):7498-7511. doi: 10.1021/acs.macromol.2c00649. Epub 2022 Aug 16.

Abstract

Designing yield stress fluids to exhibit desired functional properties is an integral challenge in many applications such as 3D printing, drilling, food formulation, fiber spinning, adhesives, and injectable biomaterials. Extensibility in particular has been found to be a highly beneficial characteristic for materials in these applications; however, few highly extensible, high water content materials have been reported to date. Herein we engineer a class of high water content nanocomposite hydrogel materials leveraging multivalent, noncovalent, polymer-nanoparticle (PNP) interactions between modified cellulose polymers and biodegradable nanoparticles. We show that modulation of the chemical composition of the PNP hydrogels controls the dynamic cross-linking interactions within the polymer network and directly impacts yielding and viscoelastic responses. These materials can be engineered to stretch up to 2000% strain and occupy an unprecedented property regime for extensible yield stress fluids. Moreover, a dimensional analysis of the relationships between extensibility and the relaxation and recovery time scales of these nanocomposite hydrogels uncovers generalizable design criteria that will be critical for future development of extensible materials.

摘要

设计具有所需功能特性的屈服应力流体是许多应用中的一项重要挑战,如3D打印、钻井、食品配方、纤维纺丝、粘合剂和可注射生物材料等。特别是可扩展性已被发现是这些应用中材料的一个非常有益的特性;然而,迄今为止,很少有高含水量且具有高可扩展性的材料被报道。在此,我们利用改性纤维素聚合物与可生物降解纳米颗粒之间的多价、非共价聚合物-纳米颗粒(PNP)相互作用,设计了一类高含水量的纳米复合水凝胶材料。我们表明,PNP水凝胶化学成分的调节控制了聚合物网络内的动态交联相互作用,并直接影响屈服和粘弹性响应。这些材料经过设计可拉伸至2000%的应变,并占据了可扩展屈服应力流体前所未有的性能范围。此外,对这些纳米复合水凝胶的可扩展性与松弛和恢复时间尺度之间关系的维度分析揭示了可推广的设计标准,这对可扩展材料的未来发展至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/335f/9476865/e3e2adff14ec/ma2c00649_0001.jpg

相似文献

1
Extreme Extensibility in Physically Cross-Linked Nanocomposite Hydrogels Leveraging Dynamic Polymer-Nanoparticle Interactions.
Macromolecules. 2022 Sep 13;55(17):7498-7511. doi: 10.1021/acs.macromol.2c00649. Epub 2022 Aug 16.
2
Supramolecular Reinforcement of Polymer-Nanoparticle Hydrogels for Modular Materials Design.
Adv Mater. 2022 Mar;34(9):e2106941. doi: 10.1002/adma.202106941. Epub 2022 Jan 25.
3
Highly Extensible Physically Crosslinked Hydrogels for High-Speed 3D Bioprinting.
Adv Healthc Mater. 2025 Apr;14(10):e2404988. doi: 10.1002/adhm.202404988. Epub 2025 Feb 16.
4
Nanoparticle-Polymer Synergies in Nanocomposite Hydrogels: From Design to Application.
Macromol Rapid Commun. 2018 Nov;39(21):e1800337. doi: 10.1002/marc.201800337. Epub 2018 Aug 17.
5
Scalable manufacturing of biomimetic moldable hydrogels for industrial applications.
Proc Natl Acad Sci U S A. 2016 Dec 13;113(50):14255-14260. doi: 10.1073/pnas.1618156113. Epub 2016 Nov 28.
6
Cellulose Nanocrystals-Incorporated Thermosensitive Hydrogel for Controlled Release, 3D Printing, and Breast Cancer Treatment Applications.
ACS Appl Mater Interfaces. 2022 Sep 28;14(38):42812-42826. doi: 10.1021/acsami.2c05864. Epub 2022 Sep 16.
7
Modular and Photoreversible Polymer-Nanoparticle Hydrogels via Host-Guest Interactions.
Small. 2024 Nov;20(48):e2401870. doi: 10.1002/smll.202401870. Epub 2024 Jul 19.
8
Exploiting Electrostatic Interactions in Polymer-Nanoparticle Hydrogels.
ACS Macro Lett. 2015 Aug 18;4(8):848-852. doi: 10.1021/acsmacrolett.5b00416. Epub 2015 Jul 27.
10
Transparent, elastomeric and tough hydrogels from poly(ethylene glycol) and silicate nanoparticles.
Acta Biomater. 2011 Dec;7(12):4139-48. doi: 10.1016/j.actbio.2011.07.023. Epub 2011 Jul 30.

引用本文的文献

3
Highly Extensible Physically Crosslinked Hydrogels for High-Speed 3D Bioprinting.
Adv Healthc Mater. 2025 Apr;14(10):e2404988. doi: 10.1002/adhm.202404988. Epub 2025 Feb 16.
5
Role of Hydrophobic Associations in Self-Healing Hydrogels Based on Amphiphilic Polysaccharides.
Polymers (Basel). 2023 Feb 21;15(5):1065. doi: 10.3390/polym15051065.
6

本文引用的文献

1
A comparison of RAFT and ATRP methods for controlled radical polymerization.
Nat Rev Chem. 2021 Dec;5(12):859-869. doi: 10.1038/s41570-021-00328-8. Epub 2021 Oct 18.
2
Gelation and yielding behavior of polymer-nanoparticle hydrogels.
J Polym Sci (2020). 2021 Nov 15;59(22):2854-2866. doi: 10.1002/pol.20210652. Epub 2021 Oct 22.
3
Albumin-Polymer-Drug Conjugates: Long Circulating, High Payload Drug Delivery Vehicles.
ACS Macro Lett. 2016 Oct 18;5(10):1089-1094. doi: 10.1021/acsmacrolett.6b00544. Epub 2016 Sep 15.
4
Extensional Flow Behavior of Methylcellulose Solutions Containing Fibrils.
ACS Macro Lett. 2018 Mar 20;7(3):347-352. doi: 10.1021/acsmacrolett.8b00042. Epub 2018 Feb 27.
6
Highly compressible glass-like supramolecular polymer networks.
Nat Mater. 2022 Jan;21(1):103-109. doi: 10.1038/s41563-021-01124-x. Epub 2021 Nov 25.
7
Stress Overshoots in Simple Yield Stress Fluids.
Phys Rev Lett. 2021 Oct 1;127(14):148003. doi: 10.1103/PhysRevLett.127.148003.
8
Small-volume extensional rheology of concentrated protein and protein-excipient solutions.
Soft Matter. 2021 Nov 3;17(42):9624-9635. doi: 10.1039/d1sm01253c.
9
Physical networks from entropy-driven non-covalent interactions.
Nat Commun. 2021 Feb 2;12(1):746. doi: 10.1038/s41467-021-21024-7.
10
Rapidly Assembling Pentapeptides for Injectable Delivery (RAPID) Hydrogels as Cytoprotective Cell Carriers.
ACS Biomater Sci Eng. 2019 May 13;5(5):2117-2121. doi: 10.1021/acsbiomaterials.9b00389. Epub 2019 Apr 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验