Grosskopf Abigail K, Mann Joseph L, Baillet Julie, Lopez Hernandez Hector, Autzen Anton A A, Yu Anthony C, Appel Eric A
Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States.
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States.
Macromolecules. 2022 Sep 13;55(17):7498-7511. doi: 10.1021/acs.macromol.2c00649. Epub 2022 Aug 16.
Designing yield stress fluids to exhibit desired functional properties is an integral challenge in many applications such as 3D printing, drilling, food formulation, fiber spinning, adhesives, and injectable biomaterials. Extensibility in particular has been found to be a highly beneficial characteristic for materials in these applications; however, few highly extensible, high water content materials have been reported to date. Herein we engineer a class of high water content nanocomposite hydrogel materials leveraging multivalent, noncovalent, polymer-nanoparticle (PNP) interactions between modified cellulose polymers and biodegradable nanoparticles. We show that modulation of the chemical composition of the PNP hydrogels controls the dynamic cross-linking interactions within the polymer network and directly impacts yielding and viscoelastic responses. These materials can be engineered to stretch up to 2000% strain and occupy an unprecedented property regime for extensible yield stress fluids. Moreover, a dimensional analysis of the relationships between extensibility and the relaxation and recovery time scales of these nanocomposite hydrogels uncovers generalizable design criteria that will be critical for future development of extensible materials.
设计具有所需功能特性的屈服应力流体是许多应用中的一项重要挑战,如3D打印、钻井、食品配方、纤维纺丝、粘合剂和可注射生物材料等。特别是可扩展性已被发现是这些应用中材料的一个非常有益的特性;然而,迄今为止,很少有高含水量且具有高可扩展性的材料被报道。在此,我们利用改性纤维素聚合物与可生物降解纳米颗粒之间的多价、非共价聚合物-纳米颗粒(PNP)相互作用,设计了一类高含水量的纳米复合水凝胶材料。我们表明,PNP水凝胶化学成分的调节控制了聚合物网络内的动态交联相互作用,并直接影响屈服和粘弹性响应。这些材料经过设计可拉伸至2000%的应变,并占据了可扩展屈服应力流体前所未有的性能范围。此外,对这些纳米复合水凝胶的可扩展性与松弛和恢复时间尺度之间关系的维度分析揭示了可推广的设计标准,这对可扩展材料的未来发展至关重要。