Zhang Kehan, Cloonan Paige E, Sundaram Subramanian, Liu Feng, Das Shoshana L, Ewoldt Jourdan K, Bays Jennifer L, Tomp Samuel, Toepfer Christopher N, Marsiglia Júlia D C, Gorham Joshua, Reichart Daniel, Eyckmans Jeroen, Seidman Jonathan G, Seidman Christine E, Chen Christopher S
Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
Sci Adv. 2021 Oct 15;7(42):eabh3995. doi: 10.1126/sciadv.abh3995.
Progressive loss of cardiac systolic function in arrhythmogenic cardiomyopathy (ACM) has recently gained attention as an important clinical consideration in managing the disease. However, the mechanisms leading to reduction in cardiac contractility are poorly defined. Here, we use CRISPR gene editing to generate human induced pluripotent stem cells (iPSCs) that harbor plakophilin-2 truncating variants (tv), the most prevalent ACM-linked mutations. The tv iPSC–derived cardiomyocytes are shown to have aberrant action potentials and reduced systolic function in cardiac microtissues, recapitulating both the electrical and mechanical pathologies reported in ACM. By combining cell micropatterning with traction force microscopy and live imaging, we found that tvs impair cardiac tissue contractility by destabilizing cell-cell junctions and in turn disrupting sarcomere stability and organization. These findings highlight the interplay between cell-cell adhesions and sarcomeres required for stabilizing cardiomyocyte structure and function and suggest fundamental pathogenic mechanisms that may be shared among different types of cardiomyopathies.
心律失常性心肌病(ACM)中心脏收缩功能的进行性丧失最近作为该疾病管理中的一个重要临床考量受到关注。然而,导致心脏收缩力降低的机制尚不清楚。在此,我们使用CRISPR基因编辑技术生成携带桥粒斑蛋白2截短变体(tv)的人诱导多能干细胞(iPSC),这是最常见的与ACM相关的突变。tv iPSC衍生的心肌细胞在心脏微组织中表现出异常动作电位和收缩功能降低,重现了ACM中报道的电学和力学病变。通过将细胞微图案化与牵引力显微镜和实时成像相结合,我们发现tv通过破坏细胞间连接,进而破坏肌节稳定性和组织,损害心脏组织收缩力。这些发现突出了稳定心肌细胞结构和功能所需的细胞间粘附与肌节之间的相互作用,并提示了不同类型心肌病可能共有的基本致病机制。