Suppr超能文献

受限玻尔兹曼机交替吉布斯采样中的障碍与动态路径

Barriers and dynamical paths in alternating Gibbs sampling of restricted Boltzmann machines.

作者信息

Roussel Clément, Cocco Simona, Monasson Rémi

机构信息

Laboratory of Physics of the École Normale Supérieure, CNRS UMR 8023 & PSL Research, Sorbonne Université, 75005 Paris, France.

出版信息

Phys Rev E. 2021 Sep;104(3-1):034109. doi: 10.1103/PhysRevE.104.034109.

Abstract

Restricted Boltzmann machines (RBM) are bilayer neural networks used for the unsupervised learning of model distributions from data. The bipartite architecture of RBM naturally defines an elegant sampling procedure, called alternating Gibbs sampling (AGS), where the configurations of the latent-variable layer are sampled conditional to the data-variable layer and vice versa. We study here the performance of AGS on several analytically tractable models borrowed from statistical mechanics. We show that standard AGS is not more efficient than classical Metropolis-Hastings (MH) sampling of the effective energy landscape defined on the data layer. However, RBM can identify meaningful representations of training data in their latent space. Furthermore, using these representations and combining Gibbs sampling with the MH algorithm in the latent space can enhance the sampling performance of the RBM when the hidden units encode weakly dependent features of the data. We illustrate our findings on three datasets: Bars and Stripes and MNIST, well known in machine learning, and the so-called lattice proteins dataset, introduced in theoretical biology to study the sequence-to-structure mapping in proteins.

摘要

受限玻尔兹曼机(RBM)是一种双层神经网络,用于从数据中对模型分布进行无监督学习。RBM的二分架构自然地定义了一种优雅的采样过程,称为交替吉布斯采样(AGS),其中潜在变量层的配置根据数据变量层进行采样,反之亦然。我们在此研究AGS在从统计力学借用的几个可解析处理的模型上的性能。我们表明,标准的AGS并不比在数据层定义的有效能量景观的经典梅特罗波利斯-黑斯廷斯(MH)采样更有效。然而,RBM可以在其潜在空间中识别训练数据的有意义表示。此外,当隐藏单元对数据的弱相关特征进行编码时,使用这些表示并将吉布斯采样与潜在空间中的MH算法相结合,可以提高RBM的采样性能。我们在三个数据集上说明了我们的发现:机器学习中广为人知的条形和条纹数据集以及MNIST数据集,以及理论生物学中引入的用于研究蛋白质序列到结构映射的所谓晶格蛋白质数据集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验