Tubiana J, Monasson R
Laboratoire de Physique Théorique, Ecole Normale Supérieure and CNRS, PSL Research, Sorbonne Universités UPMC, 24 rue Lhomond, 75005 Paris, France.
Phys Rev Lett. 2017 Mar 31;118(13):138301. doi: 10.1103/PhysRevLett.118.138301. Epub 2017 Mar 28.
Extracting automatically the complex set of features composing real high-dimensional data is crucial for achieving high performance in machine-learning tasks. Restricted Boltzmann machines (RBM) are empirically known to be efficient for this purpose, and to be able to generate distributed and graded representations of the data. We characterize the structural conditions (sparsity of the weights, low effective temperature, nonlinearities in the activation functions of hidden units, and adaptation of fields maintaining the activity in the visible layer) allowing RBM to operate in such a compositional phase. Evidence is provided by the replica analysis of an adequate statistical ensemble of random RBMs and by RBM trained on the handwritten digits data set MNIST.
自动提取构成实际高维数据的复杂特征集对于在机器学习任务中实现高性能至关重要。经验表明,受限玻尔兹曼机(RBM)在此方面是有效的,并且能够生成数据的分布式和分级表示。我们描述了使RBM能够在这种组合阶段运行的结构条件(权重的稀疏性、低有效温度、隐藏单元激活函数中的非线性以及维持可见层活动的场的适应性)。通过对随机RBM的适当统计系综的副本分析以及在手写数字数据集MNIST上训练的RBM提供了证据。