van Dijk Marlous, Rugbjerg Peter, Nygård Yvonne, Olsson Lisbeth
Department of Biology and Bioengineering, Division of Industrial Biotechnology, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden.
Biotechnol Biofuels. 2021 Oct 15;14(1):201. doi: 10.1186/s13068-021-02049-y.
The limited tolerance of Saccharomyces cerevisiae to inhibitors is a major challenge in second-generation bioethanol production, and our understanding of the molecular mechanisms providing tolerance to inhibitor-rich lignocellulosic hydrolysates is incomplete. Short-term adaptation of the yeast in the presence of dilute hydrolysate can improve its robustness and productivity during subsequent fermentation.
We utilized RNA sequencing to investigate differential gene expression in the industrial yeast strain CR01 during short-term adaptation, mimicking industrial conditions for cell propagation. In this first transcriptomic study of short-term adaption of S. cerevisiae to lignocellulosic hydrolysate, we found that cultures respond by fine-tuned up- and down-regulation of a subset of general stress response genes. Furthermore, time-resolved RNA sequencing allowed for identification of genes that were differentially expressed at 2 or more sampling points, revealing the importance of oxidative stress response, thiamin and biotin biosynthesis. furan-aldehyde reductases and specific drug:H antiporters, as well as the down-regulation of certain transporter genes.
These findings provide a better understanding of the molecular mechanisms governing short-term adaptation of S. cerevisiae to lignocellulosic hydrolysate, and suggest new genetic targets for improving fermentation robustness.
酿酒酵母对抑制剂的耐受性有限是第二代生物乙醇生产中的一个主要挑战,而且我们对赋予酵母耐受富含抑制剂的木质纤维素水解产物的分子机制的理解尚不完整。在稀水解产物存在的情况下对酵母进行短期驯化,可提高其在后续发酵过程中的稳健性和生产力。
我们利用RNA测序技术,在模拟工业条件下细胞增殖的短期驯化过程中,研究了工业酵母菌株CR01中的差异基因表达。在这项酿酒酵母对木质纤维素水解产物短期驯化的首次转录组学研究中,我们发现培养物通过对一般应激反应基因子集进行微调上调和下调来做出反应。此外,时间分辨RNA测序使得鉴定在两个或更多个采样点差异表达的基因成为可能,揭示了氧化应激反应、硫胺素和生物素生物合成、呋喃醛还原酶和特定药物:H反向转运蛋白的重要性,以及某些转运蛋白基因的下调。
这些发现使我们能更好地理解酿酒酵母对木质纤维素水解产物短期驯化的分子机制,并为提高发酵稳健性提出了新的基因靶点。