Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261.
Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261.
Proc Natl Acad Sci U S A. 2021 Oct 19;118(42). doi: 10.1073/pnas.2015666118.
In an aging population, intense interest has shifted toward prolonging health span. Mounting evidence suggests that cellular reactive species are propagators of cell damage, inflammation, and cellular senescence. Thus, such species have emerged as putative provocateurs and targets for senolysis, and a clearer understanding of their molecular origin and regulation is of paramount importance. In an inquiry into signaling triggered by aging and proxy instigator, hyperglycemia, we show that NADPH Oxidase (NOX) drives cell DNA damage and alters nuclear envelope integrity, inflammation, tissue dysfunction, and cellular senescence in mice and humans with similar causality. Most notably, selective NOX1 inhibition rescues age-impaired blood flow and angiogenesis, vasodilation, and the endothelial cell wound response. Indeed, NOX1i delivery in vivo completely reversed age-impaired hind-limb blood flow and angiogenesis while disrupting a NOX1-IL-6 senescence-associated secretory phenotype (SASP) proinflammatory signaling loop. Relevant to its comorbidity with age, clinical samples from diabetic versus nondiabetic subjects reveal as operant this NOX1-mediated vascular senescence and inflammation in humans. On a mechanistic level, our findings support a previously unidentified role for IL-6 in this feedforward inflammatory loop and peroxisome proliferator-activated receptor gamma (PPARγ) down-regulation as inversely modulating p65-mediated NOX1 transcription. Targeting this previously unidentified NOX1-SASP signaling axis in aging is predicted to be an effective strategy for mitigating senescence in the vasculature and other organ systems.
在人口老龄化的背景下,人们对延长健康寿命的兴趣日益浓厚。越来越多的证据表明,细胞反应性物质是细胞损伤、炎症和细胞衰老的传播者。因此,这些物质已成为潜在的促发因素和衰老细胞清除的靶点,深入了解其分子起源和调控机制至关重要。在一项关于衰老和潜在促发因素(高血糖)引发信号转导的研究中,我们发现 NADPH 氧化酶(NOX)可导致细胞 DNA 损伤,并改变核膜完整性、炎症、组织功能障碍和衰老细胞,在小鼠和人类中具有相似的因果关系。值得注意的是,选择性 NOX1 抑制可恢复衰老引起的血流和血管生成、血管舒张以及内皮细胞伤口反应的损伤。实际上,NOX1i 在体内的递送完全逆转了衰老引起的后肢血流和血管生成障碍,同时破坏了 NOX1-IL-6 衰老相关分泌表型(SASP)的促炎信号环路。与年龄相关的是,与糖尿病相比,来自非糖尿病患者的临床样本揭示了这种 NOX1 介导的血管衰老和炎症在人类中的作用。在机制水平上,我们的研究结果支持了 IL-6 在这种正反馈炎症环中的先前未知作用,以及过氧化物酶体增殖物激活受体γ(PPARγ)下调作为负调节 p65 介导的 NOX1 转录的作用。靶向衰老过程中这个先前未被发现的 NOX1-SASP 信号轴,有望成为减轻血管和其他器官系统衰老的有效策略。