Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI, USA.
Department of Statistics, University of Illinois Urbana-Champaign, 725 South Wright Street, Champaign, IL, USA.
Sci Rep. 2021 Oct 15;11(1):20544. doi: 10.1038/s41598-021-99754-3.
Accurate detection and risk stratification of latent tuberculosis infection (LTBI) remains a major clinical and public health problem. We hypothesize that multiparameter strategies that probe immune responses to Mycobacterium tuberculosis can provide new diagnostic insights into not only the status of LTBI infection, but also the risk of reactivation. After the initial proof-of-concept study, we developed a 13-plex immunoassay panel to profile cytokine release from peripheral blood mononuclear cells stimulated separately with Mtb-relevant and non-specific antigens to identify putative biomarker signatures. We sequentially enrolled 65 subjects with various risk of TB exposure, including 32 subjects with diagnosis of LTBI. Random Forest feature selection and statistical data reduction methods were applied to determine cytokine levels across different normalized stimulation conditions. Receiver Operator Characteristic (ROC) analysis for full and reduced feature sets revealed differences in biomarkers signatures for LTBI status and reactivation risk designations. The reduced set for increased risk included IP-10, IL-2, IFN-γ, TNF-α, IL-15, IL-17, CCL3, and CCL8 under varying normalized stimulation conditions. ROC curves determined predictive accuracies of > 80% for both LTBI diagnosis and increased risk designations. Our study findings suggest that a multiparameter diagnostic approach to detect normalized cytokine biomarker signatures might improve risk stratification in LTBI.
准确检测和分层潜伏性结核感染(LTBI)仍然是一个主要的临床和公共卫生问题。我们假设,探测针对结核分枝杆菌的免疫反应的多参数策略不仅可以提供 LTBI 感染状态的新诊断见解,还可以提供再激活的风险。在最初的概念验证研究之后,我们开发了一个 13 元组免疫分析面板,以分析外周血单个核细胞在分别用与 Mtb 相关和非特异性抗原刺激时释放的细胞因子,以确定潜在的生物标志物特征。我们连续招募了 65 名具有不同 TB 暴露风险的受试者,包括 32 名 LTBI 诊断患者。随机森林特征选择和统计数据分析方法用于确定不同归一化刺激条件下的细胞因子水平。针对完整和简化特征集的接收器工作特征(ROC)分析揭示了 LTBI 状态和再激活风险指定的生物标志物特征的差异。增加风险的简化集包括 IP-10、IL-2、IFN-γ、TNF-α、IL-15、IL-17、CCL3 和 CCL8,在不同的归一化刺激条件下。ROC 曲线确定了 LTBI 诊断和增加风险指定的预测准确性均超过 80%。我们的研究结果表明,一种多参数诊断方法来检测归一化细胞因子生物标志物特征可能会改善 LTBI 的风险分层。