Suppr超能文献

接触结构和混合对传染病模型中控制措施和疾病诱导群体免疫的影响:均值场模型视角。

The Impact of Contact Structure and Mixing on Control Measures and Disease-Induced Herd Immunity in Epidemic Models: A Mean-Field Model Perspective.

机构信息

Department of Mathematics, School of Mathematical and Physical Sciences, University of Sussex, Falmer, Brighton, BN1 9QH, UK.

Department of Informatics, School of Engineering and Informatics, University of Sussex, Falmer, Brighton, BN1 9QH, UK.

出版信息

Bull Math Biol. 2021 Oct 15;83(11):117. doi: 10.1007/s11538-021-00947-8.

Abstract

The contact structure of a population plays an important role in transmission of infection. Many 'structured models' capture aspects of the contact pattern through an underlying network or a mixing matrix. An important observation in unstructured models of a disease that confers immunity is that once a fraction [Formula: see text] has been infected, the residual susceptible population can no longer sustain an epidemic. A recent observation of some structured models is that this threshold can be crossed with a smaller fraction of infected individuals, because the disease acts like a targeted vaccine, preferentially immunising higher-risk individuals who play a greater role in transmission. Therefore, a limited 'first wave' may leave behind a residual population that cannot support a second wave once interventions are lifted. In this paper, we set out to investigate this more systematically. While networks offer a flexible framework to model contact patterns explicitly, they suffer from several shortcomings: (i) high-fidelity network models require a large amount of data which can be difficult to harvest, and (ii) very few, if any, theoretical contact network models offer the flexibility to tune different contact network properties within the same framework. Therefore, we opt to systematically analyse a number of well-known mean-field models. These are computationally efficient and provide good flexibility in varying contact network properties such as heterogeneity in the number contacts, clustering and household structure or differentiating between local and global contacts. In particular, we consider the question of herd immunity under several scenarios. When modelling interventions as changes in transmission rates, we confirm that in networks with significant degree heterogeneity, the first wave of the epidemic confers herd immunity with significantly fewer infections than equivalent models with less or no degree heterogeneity. However, if modelling the intervention as a change in the contact network, then this effect may become much more subtle. Indeed, modifying the structure disproportionately can shield highly connected nodes from becoming infected during the first wave and therefore make the second wave more substantial. We strengthen this finding by using an age-structured compartmental model parameterised with real data and comparing lockdown periods implemented either as a global scaling of the mixing matrix or age-specific structural changes. Overall, we find that results regarding (disease-induced) herd immunity levels are strongly dependent on the model, the duration of the lockdown and how the lockdown is implemented in the model.

摘要

人群的接触结构在感染传播中起着重要作用。许多“结构化模型”通过基础网络或混合矩阵来捕捉接触模式的各个方面。在赋予免疫能力的无结构疾病模型中,一个重要的观察结果是,一旦有[公式:见正文]的人群被感染,剩余的易感人群就无法再维持传染病的流行。最近对一些结构化模型的观察表明,由于疾病的作用类似于靶向疫苗,优先免疫高风险个体,而这些个体在传播中发挥更大作用,因此可以用较小比例的感染者来跨越这个阈值。因此,一旦干预措施取消,有限的“第一波”可能会留下一个无法支持第二波的剩余人群。在本文中,我们旨在更系统地研究这一点。虽然网络为明确建模接触模式提供了一个灵活的框架,但它们存在几个缺点:(i) 高保真度的网络模型需要大量数据,而这些数据可能难以收集,(ii) 几乎没有(如果有的话)理论接触网络模型能够在同一框架内灵活调整不同的接触网络特性。因此,我们选择系统地分析一些著名的平均场模型。这些模型计算效率高,在改变接触网络特性方面提供了很好的灵活性,例如接触数量的异质性、聚类和家庭结构,或者区分本地和全局接触。特别是,我们考虑了在几种情况下的群体免疫问题。当将干预措施建模为传播率的变化时,我们确认在具有显著度异质性的网络中,与具有较少或没有度异质性的等效模型相比,传染病的第一波会导致群体免疫,感染人数明显减少。然而,如果将干预措施建模为接触网络的变化,那么这种效应可能会变得更加微妙。实际上,不成比例地修改结构可以使高度连接的节点在第一波中免受感染,从而使第二波更加显著。我们使用基于真实数据的年龄结构隔室模型来加强这一发现,并比较了以全局混合矩阵缩放或年龄特异性结构变化的方式实施的封锁期。总的来说,我们发现关于(疾病引起的)群体免疫水平的结果强烈依赖于模型、封锁的持续时间以及模型中封锁的实施方式。

相似文献

2
The impact of household structure on disease-induced herd immunity.
J Math Biol. 2023 Nov 8;87(6):83. doi: 10.1007/s00285-023-02010-7.
4
Network frailty and the geometry of herd immunity.
Proc Biol Sci. 2006 Nov 7;273(1602):2743-8. doi: 10.1098/rspb.2006.3636.
5
Modelling infectious diseases with herd immunity in a randomly mixed population.
Sci Rep. 2021 Oct 18;11(1):20574. doi: 10.1038/s41598-021-00013-2.
6
A network-based explanation of why most COVID-19 infection curves are linear.
Proc Natl Acad Sci U S A. 2020 Sep 15;117(37):22684-22689. doi: 10.1073/pnas.2010398117. Epub 2020 Aug 24.
7
Time-dependent heterogeneity leads to transient suppression of the COVID-19 epidemic, not herd immunity.
Proc Natl Acad Sci U S A. 2021 Apr 27;118(17). doi: 10.1073/pnas.2015972118.
8
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
9
High-resolution epidemic simulation using within-host infection and contact data.
BMC Public Health. 2018 Jul 17;18(1):886. doi: 10.1186/s12889-018-5709-x.
10
Effects of Mitigation and Control Policies in Realistic Epidemic Models Accounting for Household Transmission Dynamics.
Med Decis Making. 2024 Jan;44(1):5-17. doi: 10.1177/0272989X231205565. Epub 2023 Nov 13.

引用本文的文献

1
Strength and weakness of disease-induced herd immunity in networks.
Proc Natl Acad Sci U S A. 2025 Jul 15;122(28):e2421460122. doi: 10.1073/pnas.2421460122. Epub 2025 Jul 10.
2
Covid-19 and Flattening the Curve: A Feedback Control Perspective.
IEEE Control Syst Lett. 2020 Nov 19;5(4):1435-1440. doi: 10.1109/LCSYS.2020.3039322. eCollection 2021 Oct.
3
The impact of household structure on disease-induced herd immunity.
J Math Biol. 2023 Nov 8;87(6):83. doi: 10.1007/s00285-023-02010-7.
4
A nonlinear relapse model with disaggregated contact rates: Analysis of a forward-backward bifurcation.
Infect Dis Model. 2023 Jun 30;8(3):769-782. doi: 10.1016/j.idm.2023.06.004. eCollection 2023 Sep.
5
A hospital demand and capacity intervention approach for COVID-19.
PLoS One. 2023 May 3;18(5):e0283350. doi: 10.1371/journal.pone.0283350. eCollection 2023.

本文引用的文献

1
Individual variation in susceptibility or exposure to SARS-CoV-2 lowers the herd immunity threshold.
J Theor Biol. 2022 May 7;540:111063. doi: 10.1016/j.jtbi.2022.111063. Epub 2022 Feb 18.
2
Optimal timing of one-shot interventions for epidemic control.
PLoS Comput Biol. 2021 Mar 18;17(3):e1008763. doi: 10.1371/journal.pcbi.1008763. eCollection 2021 Mar.
3
Repeated cross-sectional sero-monitoring of SARS-CoV-2 in New York City.
Nature. 2021 Feb;590(7844):146-150. doi: 10.1038/s41586-020-2912-6. Epub 2020 Nov 3.
4
A mathematical model reveals the influence of population heterogeneity on herd immunity to SARS-CoV-2.
Science. 2020 Aug 14;369(6505):846-849. doi: 10.1126/science.abc6810. Epub 2020 Jun 23.
5
Presymptomatic Transmission of SARS-CoV-2 - Singapore, January 23-March 16, 2020.
MMWR Morb Mortal Wkly Rep. 2020 Apr 10;69(14):411-415. doi: 10.15585/mmwr.mm6914e1.
6
Estimates of the severity of coronavirus disease 2019: a model-based analysis.
Lancet Infect Dis. 2020 Jun;20(6):669-677. doi: 10.1016/S1473-3099(20)30243-7. Epub 2020 Mar 30.
7
Persistence and clearance of viral RNA in 2019 novel coronavirus disease rehabilitation patients.
Chin Med J (Engl). 2020 May 5;133(9):1039-1043. doi: 10.1097/CM9.0000000000000774.
8
Projecting social contact matrices in 152 countries using contact surveys and demographic data.
PLoS Comput Biol. 2017 Sep 12;13(9):e1005697. doi: 10.1371/journal.pcbi.1005697. eCollection 2017 Sep.
9
Cost-efficient vaccination protocols for network epidemiology.
PLoS Comput Biol. 2017 Sep 11;13(9):e1005696. doi: 10.1371/journal.pcbi.1005696. eCollection 2017 Sep.
10
Equivalence of several generalized percolation models on networks.
Phys Rev E. 2016 Sep;94(3-1):032313. doi: 10.1103/PhysRevE.94.032313. Epub 2016 Sep 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验