Suppr超能文献

新冠疫情与平缓曲线:一种反馈控制视角

Covid-19 and Flattening the Curve: A Feedback Control Perspective.

作者信息

Di Lauro Francesco, Kiss Istvan Zoltan, Rus Daniela, Della Santina Cosimo

机构信息

Department of MathematicsUniversity of Sussex Brighton BN1 9QH U.K.

MIT Computer Science and Artificial Intelligence LaboratoryMassachusetts Institute of Technology Cambridge MA 02139 USA.

出版信息

IEEE Control Syst Lett. 2020 Nov 19;5(4):1435-1440. doi: 10.1109/LCSYS.2020.3039322. eCollection 2021 Oct.

Abstract

Many of the policies that were put into place during the Covid-19 pandemic had a common goal: to flatten the curve of the number of infected people so that its peak remains under a critical threshold. This letter considers the challenge of engineering a strategy that enforces such a goal using control theory. We introduce a simple formulation of the optimal flattening problem, and provide a closed form solution. This is augmented through nonlinear closed loop tracking of the nominal solution, with the aim of ensuring close-to-optimal performance under uncertain conditions. A key contribution of this letter is to provide validation of the method with extensive and realistic simulations in a Covid-19 scenario, with particular focus on the case of Codogno - a small city in Northern Italy that has been among the most harshly hit by the pandemic.

摘要

在新冠疫情期间实施的许多政策都有一个共同目标

使感染人数曲线趋于平缓,以便其峰值保持在临界阈值以下。本文探讨了运用控制理论制定实现这一目标的策略所面临的挑战。我们提出了最优平缓问题的一种简单表述形式,并给出了封闭形式的解。通过对标称解进行非线性闭环跟踪对其进行了扩展,目的是在不确定条件下确保接近最优的性能。本文的一个关键贡献是在新冠疫情场景中通过广泛且现实的模拟对该方法进行验证,尤其关注科多尼奥的情况——意大利北部的一个小城,是受疫情冲击最严重的地区之一。

相似文献

1
Covid-19 and Flattening the Curve: A Feedback Control Perspective.新冠疫情与平缓曲线:一种反馈控制视角
IEEE Control Syst Lett. 2020 Nov 19;5(4):1435-1440. doi: 10.1109/LCSYS.2020.3039322. eCollection 2021 Oct.
8
Nonlinear control of infection spread based on a deterministic SEIR model.基于确定性SEIR模型的感染传播非线性控制
Chaos Solitons Fractals. 2021 Aug;149:111051. doi: 10.1016/j.chaos.2021.111051. Epub 2021 Jun 5.

引用本文的文献

6
Estimating the state of epidemics spreading with graph neural networks.利用图神经网络估计流行病传播状态。
Nonlinear Dyn. 2022;109(1):249-263. doi: 10.1007/s11071-021-07160-1. Epub 2022 Jan 21.

本文引用的文献

2
Optimal timing of one-shot interventions for epidemic control.最佳时机的一次性干预措施对控制疫情。
PLoS Comput Biol. 2021 Mar 18;17(3):e1008763. doi: 10.1371/journal.pcbi.1008763. eCollection 2021 Mar.
3
Robust and optimal predictive control of the COVID-19 outbreak.对新冠疫情的稳健且最优预测控制
Annu Rev Control. 2021;51:525-539. doi: 10.1016/j.arcontrol.2020.11.002. Epub 2020 Dec 23.
10
Beware of the second wave of COVID-19.谨防新冠疫情第二波来袭。
Lancet. 2020 Apr 25;395(10233):1321-1322. doi: 10.1016/S0140-6736(20)30845-X. Epub 2020 Apr 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验