Brar Kamalpreet Kaur, Magdouli Sara, Othmani Amina, Ghanei Javad, Narisetty Vivek, Sindhu Raveendran, Binod Parameswaran, Pugazhendhi Arivalagan, Awasthi Mukesh Kumar, Pandey Ashok
Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada; Centre Technologique des Résidus Industriels en Abitibi Témiscamingue, J9X0E1, Canada.
Department of Chemistry, Faculty of Sciences of Monastir, University of Monastir, 5019, Monastir, Tunisia.
Environ Res. 2022 May 1;207:112202. doi: 10.1016/j.envres.2021.112202. Epub 2021 Oct 14.
Nowadays, nanoparticles (NPs) and nanomaterials (NMs) are used extensively in various streams such as medical science, solar energy, drug delivery, water treatment, and detection of persistent pollutants. Intensive synthesis of NPs/NMs carried out via physico-chemical technologies is deteriorating the environment globally. Therefore, an urgent need to adopt cost-effective and green technologies to synthesize NPs/NMs by recycling of secondary waste resources is highly required. Environmental wastes such as metallurgical slag, electronics (e-waste), and acid mine drainage (AMD) are rich sources of metals to produce NPs. This concept can remediate the environment on the one hand and the other hand, it can provide a future roadmap for economic benefits at industrial scale operations. The waste-derived NPs will reduce the industrial consumption of limited primary resources. In this review article, green emerging technologies involving lignocellulosic waste to synthesize the NPs from the waste streams and the role of potential microorganisms such as microalgae, fungi, yeast, bacteria for the synthesis of NPs have been discussed. A critical insight is also given on use of recycling technologies and the incorporation of NMs in the membrane bioreactors (MBRs) to improve membrane functioning and process performance. Finally, this study aims to mitigate various persisting scientific and technological challenges for the safe disposal and recycling of organic and inorganic waste for future use in the circular economy.
如今,纳米颗粒(NPs)和纳米材料(NMs)广泛应用于医学、太阳能、药物递送、水处理以及持久性污染物检测等各个领域。通过物理化学技术大量合成纳米颗粒/纳米材料正在全球范围内恶化环境。因此,迫切需要采用具有成本效益的绿色技术,通过回收二次废物资源来合成纳米颗粒/纳米材料。冶金炉渣、电子垃圾(电子废弃物)和酸性矿山排水(AMD)等环境废物是生产纳米颗粒的丰富金属来源。这一概念一方面可以修复环境,另一方面可以为工业规模运营的经济效益提供未来路线图。废物衍生的纳米颗粒将减少有限的主要资源的工业消耗。在这篇综述文章中,讨论了利用木质纤维素废物等绿色新兴技术从废物流中合成纳米颗粒,以及微藻、真菌、酵母、细菌等潜在微生物在纳米颗粒合成中的作用。还对回收技术的使用以及将纳米材料纳入膜生物反应器(MBR)以改善膜功能和工艺性能进行了批判性洞察。最后,本研究旨在应对各种持续存在的科学和技术挑战,以实现有机和无机废物的安全处置和回收,供未来在循环经济中使用。