文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

全面的肺肿瘤分子特征分析提示 AKT 和 MYC 信号通路在腺癌至鳞癌的转化中发挥作用。

Comprehensive molecular characterization of lung tumors implicates AKT and MYC signaling in adenocarcinoma to squamous cell transdifferentiation.

机构信息

Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, 408 East 69th Street, ZRC-1731, New York, NY, 10021, USA.

Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.

出版信息

J Hematol Oncol. 2021 Oct 16;14(1):170. doi: 10.1186/s13045-021-01186-z.


DOI:10.1186/s13045-021-01186-z
PMID:34656143
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8520275/
Abstract

BACKGROUND: Lineage plasticity, the ability to transdifferentiate among distinct phenotypic identities, facilitates therapeutic resistance in cancer. In lung adenocarcinomas (LUADs), this phenomenon includes small cell and squamous cell (LUSC) histologic transformation in the context of acquired resistance to targeted inhibition of driver mutations. LUAD-to-LUSC transdifferentiation, occurring in up to 9% of EGFR-mutant patients relapsed on osimertinib, is associated with notably poor prognosis. We hypothesized that multi-parameter profiling of the components of mixed histology (LUAD/LUSC) tumors could provide insight into factors licensing lineage plasticity between these histologies. METHODS: We performed genomic, epigenomics, transcriptomics and protein analyses of microdissected LUAD and LUSC components from mixed histology tumors, pre-/post-transformation tumors and reference non-transformed LUAD and LUSC samples. We validated our findings through genetic manipulation of preclinical models in vitro and in vivo and performed patient-derived xenograft (PDX) treatments to validate potential therapeutic targets in a LUAD PDX model acquiring LUSC features after osimertinib treatment. RESULTS: Our data suggest that LUSC transdifferentiation is primarily driven by transcriptional reprogramming rather than mutational events. We observed consistent relative upregulation of PI3K/AKT, MYC and PRC2 pathway genes. Concurrent activation of PI3K/AKT and MYC induced squamous features in EGFR-mutant LUAD preclinical models. Pharmacologic inhibition of EZH1/2 in combination with osimertinib prevented relapse with squamous-features in an EGFR-mutant patient-derived xenograft model, and inhibition of EZH1/2 or PI3K/AKT signaling re-sensitized resistant squamous-like tumors to osimertinib. CONCLUSIONS: Our findings provide the first comprehensive molecular characterization of LUSC transdifferentiation, suggesting putative drivers and potential therapeutic targets to constrain or prevent lineage plasticity.

摘要

背景:谱系可塑性,即在不同表型身份之间转分化的能力,促进了癌症的治疗耐药性。在肺腺癌(LUAD)中,这种现象包括在获得性对驱动基因突变的靶向抑制耐药的情况下出现小细胞和鳞状细胞(LUSC)组织学转化。在接受奥希替尼治疗后复发的 EGFR 突变患者中,多达 9%发生 LUAD 向 LUSC 的转化,与明显不良的预后相关。我们假设对混合组织学(LUAD/LUSC)肿瘤的成分进行多参数分析,可以深入了解这些组织学之间谱系可塑性的许可因素。

方法:我们对混合组织学肿瘤、转化前/后肿瘤以及参考未转化的 LUAD 和 LUSC 样本中的 LUAD 和 LUSC 成分进行了基因组、表观基因组学、转录组学和蛋白质分析。我们通过体外和体内的临床前模型的遗传操作以及在接受奥希替尼治疗后获得 LUSC 特征的 LUAD PDX 模型中进行患者来源的异种移植(PDX)治疗来验证我们的发现,从而验证了潜在的治疗靶点。

结果:我们的数据表明,LUSC 转化主要是由转录重编程驱动的,而不是突变事件驱动的。我们观察到 PI3K/AKT、MYC 和 PRC2 通路基因的相对上调一致。在 EGFR 突变的 LUAD 临床前模型中,PI3K/AKT 和 MYC 的同时激活诱导了鳞状特征。在 EGFR 突变患者来源的异种移植模型中,EZH1/2 的药理学抑制与奥希替尼联合使用可防止鳞状特征的复发,并且抑制 EZH1/2 或 PI3K/AKT 信号通路可使耐药性鳞状样肿瘤对奥希替尼重新敏感。

结论:我们的研究结果提供了 LUSC 转化的首次全面分子特征描述,提示了潜在的驱动因素和潜在的治疗靶点,以限制或防止谱系可塑性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/791d/8520275/b8101d60d229/13045_2021_1186_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/791d/8520275/0ef6574df8ee/13045_2021_1186_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/791d/8520275/36db7dcc7475/13045_2021_1186_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/791d/8520275/d9307b1e2cbe/13045_2021_1186_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/791d/8520275/c4bfa65dc093/13045_2021_1186_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/791d/8520275/a17026bbb311/13045_2021_1186_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/791d/8520275/b8101d60d229/13045_2021_1186_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/791d/8520275/0ef6574df8ee/13045_2021_1186_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/791d/8520275/36db7dcc7475/13045_2021_1186_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/791d/8520275/d9307b1e2cbe/13045_2021_1186_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/791d/8520275/c4bfa65dc093/13045_2021_1186_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/791d/8520275/a17026bbb311/13045_2021_1186_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/791d/8520275/b8101d60d229/13045_2021_1186_Fig6_HTML.jpg

相似文献

[1]
Comprehensive molecular characterization of lung tumors implicates AKT and MYC signaling in adenocarcinoma to squamous cell transdifferentiation.

J Hematol Oncol. 2021-10-16

[2]
LPCAT1 promotes brain metastasis of lung adenocarcinoma by up-regulating PI3K/AKT/MYC pathway.

J Exp Clin Cancer Res. 2019-2-21

[3]
System analysis of in LUAD and LUSC: The expression, prognosis, gene regulation network, and regulation targets.

Int J Biol Markers. 2022-6

[4]
Downregulation of Linc00173 increases BCL2 mRNA stability via the miR-1275/PROCA1/ZFP36L2 axis and induces acquired cisplatin resistance of lung adenocarcinoma.

J Exp Clin Cancer Res. 2023-1-10

[5]
Comparative study on the mutational profile of adenocarcinoma and squamous cell carcinoma predominant histologic subtypes in Chinese non-small cell lung cancer patients.

Thorac Cancer. 2020-1

[6]
Paired genomic analysis of squamous cell carcinoma transformed from EGFR-mutated lung adenocarcinoma.

Lung Cancer. 2019-5-24

[7]
Deregulation of AKT-mTOR Signaling Contributes to Chemoradiation Resistance in Lung Squamous Cell Carcinoma.

Mol Cancer Res. 2022-3-1

[8]
STRIP2 is regulated by the transcription factor Sp1 and promotes lung adenocarcinoma progression via activating the PI3K/AKT/mTOR/MYC signaling pathway.

Genomics. 2024-9

[9]
Differential prognostic impact and potential molecular mechanisms of PCDHGA12 expression in lung adenocarcinoma and squamous cell carcinoma.

Int Immunopharmacol. 2024-9-30

[10]
Association of TOP2A and ADH1B with lipid levels and prognosis in patients with lung adenocarcinoma and squamous cell carcinoma.

Clin Respir J. 2023-12

引用本文的文献

[1]
Histologic Transformation in Cancer: The Path for Clinical Translation.

Cancer Discov. 2025-9-4

[2]
Persistent lineage plasticity driving lung cancer development and progression.

Clin Transl Med. 2025-8

[3]
Interpretable and integrative analysis of single-cell multiomics with scMKL.

Commun Biol. 2025-8-6

[4]
Complementary modes of resistance to TKI in lung adenocarcinoma through MAPK activation and cellular plasticity.

bioRxiv. 2025-5-10

[5]
Unraveling the immune mechanisms and therapeutic targets in lung adenosquamous transformation.

Front Immunol. 2025-6-3

[6]
Assessment of MXD3 Expression as a Predictor of Survival in Lung Squamous Cell Carcinoma.

Int J Genomics. 2025-5-15

[7]
Molecular mechanisms and therapeutic strategies for small‑cell lung cancer transformation after TKI therapy in EGFR‑mutated lung adenocarcinoma (Review).

Mol Clin Oncol. 2025-5-6

[8]
APOBEC3 Activity Promotes the Survival and Evolution of Drug-Tolerant Persister Cells during EGFR Inhibitor Resistance in Lung Cancer.

Cancer Res Commun. 2025-5-1

[9]
DelaySSA: stochastic simulation of biochemical systems and gene regulatory networks with or without time delays.

PLoS Comput Biol. 2025-4-8

[10]
Optimizing Osimertinib for NSCLC: Targeting Resistance and Exploring Combination Therapeutics.

Cancers (Basel). 2025-1-29

本文引用的文献

[1]
Direct genome editing of patient-derived xenografts using CRISPR-Cas9 enables rapid functional genomics.

Nat Cancer. 2020-3

[2]
Deciphering the clonal relationship between glandular and squamous components in adenosquamous carcinoma of the lung using whole exome sequencing.

Lung Cancer. 2020-12

[3]
RBM10, a New Regulator of p53.

Cells. 2020-9-16

[4]
HNF4A and GATA6 Loss Reveals Therapeutically Actionable Subtypes in Pancreatic Cancer.

Cell Rep. 2020-5-12

[5]
Lineage plasticity in cancer: a shared pathway of therapeutic resistance.

Nat Rev Clin Oncol. 2020-3-9

[6]
ALK Rearrangement Adenocarcinoma with Histological Transformation to Squamous Cell Carcinoma Resistant to Alectinib and Ceritinib.

Onco Targets Ther. 2020-2-19

[7]
Transformation of EML4-ALK fusion-positive adenocarcinoma into squamous cell carcinoma in association with acquired resistance to crizotinib.

Lung Cancer. 2020-2

[8]
Tumor Analyses Reveal Squamous Transformation and Off-Target Alterations As Early Resistance Mechanisms to First-line Osimertinib in -Mutant Lung Cancer.

Clin Cancer Res. 2020-6-1

[9]
A qualitative transcriptional signature for the histological reclassification of lung squamous cell carcinomas and adenocarcinomas.

BMC Genomics. 2019-11-21

[10]
The roles and regulation of TBX3 in development and disease.

Gene. 2019-10-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索