Suppr超能文献

使用scMKL对单细胞多组学进行可解释的综合分析。

Interpretable and integrative analysis of single-cell multiomics with scMKL.

作者信息

Kupp Samuel D, VanGordon Ian A, Gönen Mehmet, Esener Sadık, Eksi Sebnem Ece, Ak Çiğdem

机构信息

Cancer Early Detection Advanced Research (CEDAR), Knight Cancer Institute, OHSU, Portland, OR, USA.

Department of Industrial Engineering, College of Engineering, Koç University, İstanbul, Türkiye.

出版信息

Commun Biol. 2025 Aug 6;8(1):1160. doi: 10.1038/s42003-025-08533-7.

Abstract

The rapid advancement of single-cell technologies has led to the development of various analysis methods, each with trade-offs between predictive power and interpretability particularly for multimodal data integration. Complex machine learning models achieve high accuracy, but they often lack transparency, while simpler models are more interpretable but less effective for prediction. In this manuscript, we introduce an innovative method for single-cell analysis using Multiple Kernel Learning (scMKL), that merges the predictive capabilities of complex models with the interpretability of linear approaches, aimed at providing actionable insights from single-cell multiomics data. scMKL excels at classifying healthy and cancerous cell populations across multiple cancer types, utilizing data from single-cell RNA sequencing, ATAC sequencing, and 10x Multiome. It outperforms existing methods while delivering interpretable results that identify key transcriptomic and epigenetic features, as well as multimodal pathways- that existing methods have failed to achieve, in breast, lymphatic, prostate, and lung cancers. Leveraging insights from one dataset to inform analysis in a new dataset, scMKL uncovers biological pathways that distinguish treatment responses in breast cancer, low-grade from high-grade prostate tumors, and subtypes in lung cancer, thereby enhancing our understanding of cancer biology and tumor progression.

摘要

单细胞技术的快速发展催生了各种分析方法,每种方法在预测能力和可解释性之间都存在权衡,尤其是在多模态数据整合方面。复杂的机器学习模型能实现高精度,但往往缺乏透明度,而较简单的模型更具可解释性,但预测效果较差。在本论文中,我们介绍了一种使用多核学习(scMKL)进行单细胞分析的创新方法,该方法将复杂模型的预测能力与线性方法的可解释性相结合,旨在从单细胞多组学数据中提供可操作的见解。scMKL擅长利用单细胞RNA测序、ATAC测序和10x Multiome的数据,对多种癌症类型中的健康细胞群体和癌细胞群体进行分类。它在乳腺癌、淋巴癌、前列腺癌和肺癌中优于现有方法,同时提供可解释的结果,识别关键的转录组和表观遗传特征以及多模态通路,而这是现有方法未能实现的。利用一个数据集的见解为新数据集中的分析提供信息,scMKL揭示了区分乳腺癌治疗反应、前列腺癌低级别与高级别肿瘤以及肺癌亚型的生物学通路,从而增进了我们对癌症生物学和肿瘤进展的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验