Suppr超能文献

癌症中的谱系可塑性:治疗抵抗的共同途径。

Lineage plasticity in cancer: a shared pathway of therapeutic resistance.

机构信息

Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

出版信息

Nat Rev Clin Oncol. 2020 Jun;17(6):360-371. doi: 10.1038/s41571-020-0340-z. Epub 2020 Mar 9.

Abstract

Lineage plasticity, the ability of cells to transition from one committed developmental pathway to another, has been proposed as a source of intratumoural heterogeneity and of tumour adaptation to an adverse tumour microenvironment including exposure to targeted anticancer treatments. Tumour cell conversion into a different histological subtype has been associated with a loss of dependency on the original oncogenic driver, leading to therapeutic resistance. A well-known pathway of lineage plasticity in cancer - the histological transformation of adenocarcinomas to aggressive neuroendocrine derivatives - was initially described in lung cancers harbouring an EGFR mutation, and was subsequently reported in multiple other adenocarcinomas, including prostate cancer in the presence of antiandrogens. Squamous transformation is a subsequently identified and less well-characterized pathway of adenocarcinoma escape from suppressive anticancer therapy. The increased practice of tumour re-biopsy upon disease progression has increased the recognition of these mechanisms of resistance and has improved our understanding of the underlying biology. In this Review, we provide an overview of the impact of lineage plasticity on cancer progression and therapy resistance, with a focus on neuroendocrine transformation in lung and prostate tumours. We discuss the current understanding of the molecular drivers of this phenomenon, emerging management strategies and open questions in the field.

摘要

谱系可塑性,即细胞从一种定向发育途径转变为另一种途径的能力,被认为是肿瘤内异质性的来源,也是肿瘤适应包括靶向抗癌治疗在内的不利肿瘤微环境的原因。肿瘤细胞向不同组织学亚型的转化与对原始致癌驱动因素的依赖性丧失有关,从而导致治疗耐药。癌症中众所周知的谱系可塑性途径——腺癌向侵袭性神经内分泌衍生的组织学转化——最初在携带 EGFR 突变的肺癌中被描述,随后在多种其他腺癌中被报道,包括在抗雄激素存在下的前列腺癌。鳞状转化是腺癌逃避抑制性抗癌治疗的随后确定的、特征性较差的途径。随着疾病进展时进行肿瘤再活检的实践增加,这些耐药机制的认识得到了提高,并加深了我们对潜在生物学的理解。在这篇综述中,我们概述了谱系可塑性对癌症进展和治疗耐药性的影响,重点介绍了肺癌和前列腺癌中的神经内分泌转化。我们讨论了对这一现象的分子驱动因素的现有理解、新兴的管理策略以及该领域的开放性问题。

相似文献

1
Lineage plasticity in cancer: a shared pathway of therapeutic resistance.
Nat Rev Clin Oncol. 2020 Jun;17(6):360-371. doi: 10.1038/s41571-020-0340-z. Epub 2020 Mar 9.
4
Biology and evolution of poorly differentiated neuroendocrine tumors.
Nat Med. 2017 Jun 6;23(6):1-10. doi: 10.1038/nm.4341.
5
CDC7 inhibition impairs neuroendocrine transformation in lung and prostate tumors through MYC degradation.
Signal Transduct Target Ther. 2024 Jul 26;9(1):189. doi: 10.1038/s41392-024-01908-y.
6
Mechanisms of primary resistance to EGFR targeted therapy in advanced lung adenocarcinomas.
Lung Cancer. 2018 Oct;124:110-116. doi: 10.1016/j.lungcan.2018.07.039. Epub 2018 Jul 29.
7
Long non-coding RNAs in lung cancer: implications for lineage plasticity-mediated TKI resistance.
Cell Mol Life Sci. 2021 Mar;78(5):1983-2000. doi: 10.1007/s00018-020-03691-9. Epub 2020 Nov 10.
9
Controls Luminal Epithelial Lineage and Antiandrogen Sensitivity in and -Mutated Prostate Cancer.
Clin Cancer Res. 2018 Sep 15;24(18):4551-4565. doi: 10.1158/1078-0432.CCR-18-0653. Epub 2018 May 29.
10
Transdifferentiation as a Mechanism of Treatment Resistance in a Mouse Model of Castration-Resistant Prostate Cancer.
Cancer Discov. 2017 Jul;7(7):736-749. doi: 10.1158/2159-8290.CD-16-1174. Epub 2017 Apr 14.

引用本文的文献

1
BOGO: A Proteome-Wide Gene Overexpression Platform for Discovering Rational Cancer Combination Therapies.
bioRxiv. 2025 Sep 7:2025.09.02.673780. doi: 10.1101/2025.09.02.673780.
2
Metabolic Reprogramming: A Crucial Contributor to Anticancer Drug Resistance.
MedComm (2020). 2025 Sep 6;6(9):e70358. doi: 10.1002/mco2.70358. eCollection 2025 Sep.
3
Mapping cancer heterogeneity: a consensus network approach to subtypes and pathways.
Brief Bioinform. 2025 Aug 31;26(5). doi: 10.1093/bib/bbaf452.
4
Persistent lineage plasticity driving lung cancer development and progression.
Clin Transl Med. 2025 Aug;15(8):e70458. doi: 10.1002/ctm2.70458.
6
Transitory Schwann Cell Precursor and hybrid states underpin melanoma therapy resistance and metastasis.
bioRxiv. 2025 Jul 23:2022.10.14.512297. doi: 10.1101/2022.10.14.512297.
8
New Insights into Potential Therapeutic Targets for Neuroendocrine Prostate Cancer: From Bench to Clinic.
Research (Wash D C). 2025 Jul 31;8:0791. doi: 10.34133/research.0791. eCollection 2025.
9
10
Lineage rewiring in lung adenocarcinoma via HNF4α and NKX2-1 dynamics.
Genes Dev. 2025 Sep 2;39(17-18):993-994. doi: 10.1101/gad.353142.125.

本文引用的文献

2
FOXA1 mutations alter pioneering activity, differentiation and prostate cancer phenotypes.
Nature. 2019 Jul;571(7765):408-412. doi: 10.1038/s41586-019-1318-9. Epub 2019 Jun 26.
4
Transcriptomic Hallmarks of Tumor Plasticity and Stromal Interactions in Brain Metastasis.
Cell Rep. 2019 Apr 23;27(4):1277-1292.e7. doi: 10.1016/j.celrep.2019.03.085.
6
Molecular subtypes of small cell lung cancer: a synthesis of human and mouse model data.
Nat Rev Cancer. 2019 May;19(5):289-297. doi: 10.1038/s41568-019-0133-9.
7
8
Delta-like protein 3 expression and therapeutic targeting in neuroendocrine prostate cancer.
Sci Transl Med. 2019 Mar 20;11(484). doi: 10.1126/scitranslmed.aav0891.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验