Suppr超能文献

心血管疾病中的超声造影、声溶栓和声灌注:向治疗诊断临床试验的转变。

Contrast Ultrasound, Sonothrombolysis and Sonoperfusion in Cardiovascular Disease: Shifting to Theragnostic Clinical Trials.

机构信息

Amsterdam University Medical Centers, location Vrije Universiteit, Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands.

University of Nebraska Medical Center, Division of Cardiovascular Medicine, Omaha, Nebraska, USA.

出版信息

JACC Cardiovasc Imaging. 2022 Feb;15(2):345-360. doi: 10.1016/j.jcmg.2021.07.028. Epub 2021 Oct 13.

Abstract

Contrast ultrasound has a variety of applications in cardiovascular medicine, both in diagnosing cardiovascular disease as well as providing prognostic information. Visualization of intravascular contrast microbubbles is based on acoustic cavitation, the characteristic oscillation that results in changes in the reflected ultrasound waves. At high power, this acoustic response generates sufficient shear that is capable of enhancing endothelium-dependent perfusion in atherothrombotic cardiovascular disease (sonoperfusion). The oscillation and collapse of microbubbles in response to ultrasound also induces microstreaming and jetting that can fragment thrombus (sonothrombolysis). Several preclinical studies have focused on identifying optimal diagnostic ultrasound settings and treatment regimens. Clinical trials have been performed in acute myocardial infarction, stroke, and peripheral arterial disease often with improved outcome. In the coming years, results of ongoing clinical trials along with innovation and improvements in sonothrombolysis and sonoperfusion will determine whether this theragnostic technique will become a valuable addition to reperfusion therapy.

摘要

超声造影在心血管医学中有多种应用,既可以用于诊断心血管疾病,也可以提供预后信息。血管内造影微泡的可视化基于声空化,这是一种特征性的振荡,导致反射超声的变化。在高功率下,这种声响应产生足够的剪切力,能够增强动脉粥样硬化性心血管疾病中的内皮依赖性灌注(声灌注)。微泡对超声的振动和破裂也会引起微流和射流,从而使血栓碎裂(超声溶栓)。一些临床前研究的重点是确定最佳的诊断超声设置和治疗方案。已经在急性心肌梗死、中风和外周动脉疾病中进行了临床试验,通常会改善结果。在未来几年,随着创新和超声溶栓和超声灌注的改进,正在进行的临床试验的结果将决定这种治疗诊断技术是否会成为再灌注治疗的有价值的补充。

相似文献

1
Contrast Ultrasound, Sonothrombolysis and Sonoperfusion in Cardiovascular Disease: Shifting to Theragnostic Clinical Trials.
JACC Cardiovasc Imaging. 2022 Feb;15(2):345-360. doi: 10.1016/j.jcmg.2021.07.028. Epub 2021 Oct 13.
2
Advances in Ultrasound Therapeutics.
Curr Cardiol Rep. 2021 Aug 19;23(10):133. doi: 10.1007/s11886-021-01563-7.
3
Effect of Ultrasound on Thrombus debris during Sonothrombolysis in a Microfluidic device.
J Thromb Thrombolysis. 2024 Aug;57(6):1056-1066. doi: 10.1007/s11239-024-03005-x. Epub 2024 Jun 2.
4
New insights into mechanisms of sonothrombolysis using ultra-high-speed imaging.
Ultrasound Med Biol. 2014 Jan;40(1):258-62. doi: 10.1016/j.ultrasmedbio.2013.08.021. Epub 2013 Oct 18.
5
Current Status of Sub-micron Cavitation-Enhancing Agents for Sonothrombolysis.
Ultrasound Med Biol. 2023 May;49(5):1049-1057. doi: 10.1016/j.ultrasmedbio.2023.01.018. Epub 2023 Mar 1.
6
Combining radiation force with cavitation for enhanced sonothrombolysis.
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Jan;60(1):97-104. doi: 10.1109/TUFFC.2013.2541.
8
Therapeutic Use of Microbubbles and Ultrasound in Acute Peripheral Arterial Thrombosis: A Systematic Review.
Ultrasound Med Biol. 2021 Oct;47(10):2821-2838. doi: 10.1016/j.ultrasmedbio.2021.06.001. Epub 2021 Jul 13.
9
Properties, characteristics and applications of microbubbles for sonothrombolysis.
Expert Opin Drug Deliv. 2014 Feb;11(2):187-209. doi: 10.1517/17425247.2014.868434. Epub 2014 Jan 9.
10
Advances in Sonothrombolysis Techniques Using Piezoelectric Transducers.
Sensors (Basel). 2020 Feb 27;20(5):1288. doi: 10.3390/s20051288.

引用本文的文献

3
Biosynthetic gas vesicles as a novel ultrasound contrast agent for diagnosing and treating myocardial infarction.
Theranostics. 2025 Jul 28;15(16):8553-8568. doi: 10.7150/thno.118543. eCollection 2025.
5
Rapid synergistic thrombolysis of ischemic stroke guided by high-resolution and high-speed photoacoustic cerebrovascular imaging.
Photoacoustics. 2025 Apr 4;43:100722. doi: 10.1016/j.pacs.2025.100722. eCollection 2025 Jun.
6
Quantitative correlation between carotid or lower limb atherosclerosis and coronary heart disease: a retrospective observational study.
Front Endocrinol (Lausanne). 2025 Mar 24;16:1570942. doi: 10.3389/fendo.2025.1570942. eCollection 2025.
7
The impact of YTHDF2-mediated NCOA4 methylation on myocardial ferroptosis.
Apoptosis. 2025 Apr 1. doi: 10.1007/s10495-025-02106-z.
8
Theoretical and Experimental Studies of the Dynamic Damage of Endothelial Cellular Networks Under Ultrasound Cavitation.
Cell Mol Bioeng. 2024 Nov 28;18(1):15-28. doi: 10.1007/s12195-024-00834-x. eCollection 2025 Feb.
9
Targeting Reactive Oxygen Species for Diagnosis of Various Diseases.
J Funct Biomater. 2024 Dec 15;15(12):378. doi: 10.3390/jfb15120378.
10
Clinical Applications of Micro/Nanobubble Technology in Neurological Diseases.
Biomimetics (Basel). 2024 Oct 20;9(10):645. doi: 10.3390/biomimetics9100645.

本文引用的文献

1
Efficacy of Sonothrombolysis Using Acoustically Activated Perflutren Nanodroplets versus Perflutren Microbubbles.
Ultrasound Med Biol. 2021 Jul;47(7):1814-1825. doi: 10.1016/j.ultrasmedbio.2021.03.016. Epub 2021 Apr 23.
2
Augmentation of Tissue Perfusion with Contrast Ultrasound: Influence of Three-Dimensional Beam Geometry and Conducted Vasodilation.
J Am Soc Echocardiogr. 2021 Aug;34(8):887-895. doi: 10.1016/j.echo.2021.02.018. Epub 2021 Mar 10.
3
Sonothrombolysis in the ambulance for ST-elevation myocardial infarction: rationale and protocol.
Neth Heart J. 2021 Jun;29(6):330-337. doi: 10.1007/s12471-020-01516-9. Epub 2020 Nov 12.
4
A Comparison of Sonothrombolysis in Aged Clots between Low-Boiling-Point Phase-Change Nanodroplets and Microbubbles of the Same Composition.
Ultrasound Med Biol. 2020 Nov;46(11):3059-3068. doi: 10.1016/j.ultrasmedbio.2020.07.008. Epub 2020 Aug 14.
7
Flow Augmentation in the Myocardium by Ultrasound Cavitation of Microbubbles: Role of Shear-Mediated Purinergic Signaling.
J Am Soc Echocardiogr. 2020 Aug;33(8):1023-1031.e2. doi: 10.1016/j.echo.2020.03.016. Epub 2020 Jun 10.
8
Event-Free Survival Following Successful Percutaneous Intervention in Acute Myocardial Infarction Depends on Microvascular Perfusion.
Circ Cardiovasc Imaging. 2020 Jun;13(6):e010091. doi: 10.1161/CIRCIMAGING.119.010091. Epub 2020 Jun 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验