Chen Pubo, Huang Jie, Rao Liuyu, Zhu Wengen, Yu Yuhe, Xiao Fanshu, Yu Huang, Wu Yongjie, Hu Ruiwen, Liu Xingyu, He Zhili, Yan Qingyun
Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China.
Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
Sci Total Environ. 2022 Feb 1;806(Pt 4):150963. doi: 10.1016/j.scitotenv.2021.150963. Epub 2021 Oct 15.
The environmental stresses could significantly affect the structure and functions of microbial communities colonized in the gut ecosystem. However, little is known about how engineered nanoparticles (ENPs), which have recently become a common pollutant in the environment, affect the gut microbiota across fish development. Based on the high-throughput sequencing of the 16S rRNA gene amplicon, we explored the ecological succession of gut microbiota in zebrafish exposed to nanoparticles for three months. The nanoparticles used herein including titanium dioxide nanoparticles (nTiO, 100 μg/L), zinc oxide nanoparticles (nZnO, 100 μg/L), and selenium nanoparticles (nSe, 100 μg/L). Our results showed that nanoparticles exposure reduced the alpha diversity of gut microbiota at 73-90 days post-hatching (dph), but showed no significant effects at 14-36 dph. Moreover, nTiO significantly (p < 0.05) altered the composition of the gut microbial communities at 73-90 dph (e.g., decreasing abundance of Cetobacterium and Vibrio). Moreover, we found that homogeneous selection was the major process (16.6-57.8%) governing the community succession of gut microbiota. Also, nanoparticles exposure caused topological alterations to microbial networks and led to increased positive interactions to destabilize the gut microbial community. This study reveals the environmental effects of nanoparticles on the ecological succession of gut microbiota across zebrafish development, which provides novel insights to understand the gut microbial responses to ENPs over the development of aquatic animals.
环境压力会显著影响定殖于肠道生态系统中的微生物群落的结构和功能。然而,对于工程纳米颗粒(ENPs)这种近来已成为环境中常见污染物的物质如何在鱼类发育过程中影响肠道微生物群,人们却知之甚少。基于16S rRNA基因扩增子的高通量测序,我们探究了暴露于纳米颗粒三个月的斑马鱼肠道微生物群的生态演替。本文使用的纳米颗粒包括二氧化钛纳米颗粒(nTiO,100 μg/L)、氧化锌纳米颗粒(nZnO,100 μg/L)和硒纳米颗粒(nSe,100 μg/L)。我们的结果表明,纳米颗粒暴露在孵化后73 - 90天(dph)降低了肠道微生物群的α多样性,但在14 - 36 dph时未显示出显著影响。此外,nTiO在73 - 90 dph时显著(p < 0.05)改变了肠道微生物群落的组成(例如,降低了鲸杆菌属和弧菌属的丰度)。此外,我们发现均匀选择是控制肠道微生物群落演替的主要过程(16.6 - 57.8%)。而且,纳米颗粒暴露导致微生物网络的拓扑结构改变,并导致正相互作用增加,从而使肠道微生物群落不稳定。本研究揭示了纳米颗粒对斑马鱼整个发育过程中肠道微生物群生态演替的环境影响,为理解水生动物发育过程中肠道微生物对ENPs的反应提供了新的见解。