Suppr超能文献

利用机器学习推进差异研究:阿片类药物治疗机会的亚组分析。

Using machine learning to advance disparities research: Subgroup analyses of access to opioid treatment.

机构信息

College of Business and Economics, California State University Fullerton, Fullerton, California, USA.

International Institute of Finance, School of Management, University of Science and Technology of China, Hefei, Anhui, China.

出版信息

Health Serv Res. 2022 Apr;57(2):411-421. doi: 10.1111/1475-6773.13896. Epub 2021 Oct 24.

Abstract

OBJECTIVE

To operationalize an intersectionality framework using a novel statistical approach and with these efforts, improve the estimation of disparities in access (i.e., wait time to treatment entry) to opioid use disorder (OUD) treatment beyond race.

DATA SOURCE

Sample of 941,286 treatment episodes collected in 2015-2017 in the United States from the Treatment Episodes Data Survey (TEDS-A) and a subset from California (n = 188,637) and Maryland (n = 184,276), states with the largest sample of episodes.

STUDY DESIGN

This retrospective subgroup analysis used a two-step approach called virtual twins. In Step 1, we trained a classification model that gives the probability of waiting (1 day or more). In Step 2, we identified subgroups with a higher probability of differences due to race. We tested three classification models for Step 1 and identified the model with the best estimation.

DATA COLLECTION

Client data were collected by states during personal interviews at admission and discharge.

PRINCIPAL FINDINGS

Random forest was the most accurate model for the first step of subgroup analysis. We found large variation across states in racial disparities. Stratified analysis of two states with the largest samples showed critical factors that augmented disparities beyond race. In California, factors such as service setting, referral source, and homelessness defined the subgroup most vulnerable to racial disparities. In Maryland, service setting, prior episodes, receipt of medication-assisted opioid treatment, and primary drug use frequency augmented disparities beyond race. The identified subgroups had significantly larger racial disparities.

CONCLUSIONS

The methodology used in this study enabled a nuanced understanding of the complexities in disparities research. We found state and service factors that intersected with race and augmented disparities in wait time. Findings can help decision makers target modifiable factors that make subgroups vulnerable to waiting longer to enter treatment.

摘要

目的

利用一种新的统计方法将交叉性框架具体化,并通过这些努力,提高对阿片类药物使用障碍(OUD)治疗机会(即治疗开始前的等待时间)差距的估计,超越种族。

数据来源

美国 2015-2017 年治疗阶段数据调查(TEDS-A)收集的 941286 个治疗阶段样本,以及加利福尼亚州(n=188637)和马里兰州(n=184276)的一个子集,这两个州的样本量最大。

研究设计

这项回顾性亚组分析采用了一种称为虚拟双胞胎的两步方法。在步骤 1 中,我们训练了一个分类模型,该模型给出了等待(1 天或更长时间)的概率。在步骤 2 中,我们确定了由于种族而存在更高差异概率的亚组。我们为步骤 1 测试了三种分类模型,并确定了估计效果最佳的模型。

数据收集

各州在入院和出院时通过个人访谈收集客户数据。

主要发现

随机森林是亚组分析第一步中最准确的模型。我们发现各州之间的种族差异存在很大差异。对两个样本量最大的州进行分层分析表明,除种族外,还有一些关键因素加剧了差异。在加利福尼亚州,服务设置、转介来源和无家可归等因素定义了最容易受到种族差异影响的亚组。在马里兰州,服务设置、既往阶段、接受药物辅助阿片类药物治疗以及主要药物使用频率等因素加剧了种族差异。确定的亚组存在显著更大的种族差异。

结论

本研究中使用的方法使我们能够更细致地了解差异研究的复杂性。我们发现了与种族相交并加剧等待时间差异的州和服务因素。研究结果可以帮助决策者针对可能使亚组更容易等待更长时间进入治疗的可修改因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6197/8928038/9ae85b238f6f/HESR-57-411-g002.jpg

相似文献

1
Using machine learning to advance disparities research: Subgroup analyses of access to opioid treatment.
Health Serv Res. 2022 Apr;57(2):411-421. doi: 10.1111/1475-6773.13896. Epub 2021 Oct 24.
2
Use of machine learning to examine disparities in completion of substance use disorder treatment.
PLoS One. 2022 Sep 23;17(9):e0275054. doi: 10.1371/journal.pone.0275054. eCollection 2022.
3
Race/Ethnicity and Sex and Opioid Administration in the Emergency Room.
Anesth Analg. 2019 May;128(5):1005-1012. doi: 10.1213/ANE.0000000000003517.
4
Treatment outcome disparities for opioid users: Are there racial and ethnic differences in treatment completion across large US metropolitan areas?
Drug Alcohol Depend. 2018 Sep 1;190:170-178. doi: 10.1016/j.drugalcdep.2018.06.006. Epub 2018 Jul 11.
5
Workforce Diversity and disparities in wait time and retention among opioid treatment programs.
Subst Abuse Treat Prev Policy. 2022 Nov 16;17(1):74. doi: 10.1186/s13011-022-00500-3.
6
Waiting times disparities for medication-assisted therapy among opioid use disorder treatment population in the United States.
J Addict Dis. 2023 Oct-Dec;41(4):322-333. doi: 10.1080/10550887.2022.2116904. Epub 2022 Sep 9.
7
Disparities in Opioid Use Disorder Treatment Admissions.
J Health Econ Outcomes Res. 2020 Jun 22;7(1):85-93. doi: 10.36469/jheor.2020.13266. eCollection 2020.
8
Opioid agonist treatment and fatal overdose risk in a state-wide US population receiving opioid use disorder services.
Addiction. 2020 Sep;115(9):1683-1694. doi: 10.1111/add.14991. Epub 2020 Feb 24.
9
Racial disparities in opioid prescriptions for fractures in the pediatric population.
Am J Emerg Med. 2022 Jan;51:210-213. doi: 10.1016/j.ajem.2021.10.017. Epub 2021 Oct 14.
10
The impact of psychiatric comorbidity on treatment discontinuation among individuals receiving medications for opioid use disorder.
Drug Alcohol Depend. 2020 Nov 1;216:108244. doi: 10.1016/j.drugalcdep.2020.108244. Epub 2020 Aug 22.

引用本文的文献

2
Factors predicting access to medications for opioid use disorder for housed and unhoused patients: A machine learning approach.
PLoS One. 2024 Sep 27;19(9):e0308791. doi: 10.1371/journal.pone.0308791. eCollection 2024.
7
Racial/ethnic residential segregation and the availability of opioid and substance use treatment facilities in US counties, 2009-2019.
SSM Popul Health. 2022 Nov 19;20:101289. doi: 10.1016/j.ssmph.2022.101289. eCollection 2022 Dec.
8
Use of machine learning to examine disparities in completion of substance use disorder treatment.
PLoS One. 2022 Sep 23;17(9):e0275054. doi: 10.1371/journal.pone.0275054. eCollection 2022.

本文引用的文献

1
Evolving Intersectionality Within Public Health: From Analysis to Action.
Am J Public Health. 2021 Jan;111(1):88-90. doi: 10.2105/AJPH.2020.306031.
3
Racial and ethnic differences in opioid agonist treatment for opioid use disorder in a U.S. national sample.
Drug Alcohol Depend. 2017 Sep 1;178:512-518. doi: 10.1016/j.drugalcdep.2017.06.009. Epub 2017 Jul 11.
5
Effectiveness of treatment for opioid use disorder: A national, five-year, prospective, observational study in England.
Drug Alcohol Depend. 2017 Jul 1;176:139-147. doi: 10.1016/j.drugalcdep.2017.03.013. Epub 2017 May 16.
6
Does the implementation of evidence-based and culturally competent practices reduce disparities in addiction treatment outcomes?
Addict Behav. 2017 Oct;73:119-123. doi: 10.1016/j.addbeh.2017.05.006. Epub 2017 May 9.
7
Increases in Drug and Opioid-Involved Overdose Deaths - United States, 2010-2015.
MMWR Morb Mortal Wkly Rep. 2016 Dec 30;65(50-51):1445-1452. doi: 10.15585/mmwr.mm655051e1.
8
Racial and Ethnic Disparities in Outpatient Substance Use Disorder Treatment Episode Completion for Different Substances.
J Subst Abuse Treat. 2016 Apr;63:25-33. doi: 10.1016/j.jsat.2015.12.007. Epub 2015 Dec 29.
9
Gender disparities in utilization and outcome of comprehensive substance abuse treatment among racial/ethnic groups.
J Subst Abuse Treat. 2014 May-Jun;46(5):584-91. doi: 10.1016/j.jsat.2013.12.008. Epub 2013 Dec 21.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验