Molecular Biophysics Group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103 Leipzig, Germany.
Institute for Molecular Cell Biology, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany.
Nanoscale. 2021 Oct 28;13(41):17556-17565. doi: 10.1039/d1nr04225d.
Within the field of DNA nanotechnology, numerous methods were developed to produce complex two- and three-dimensional DNA nanostructures for many different emerging applications. These structures typically suffer from a low tolerance against non-optimal environmental conditions including elevated temperatures. Here, we apply a chemical ligation method to covalently seal the nicks between adjacent 5' phosphorylated and 3' amine-modified strands within the DNA nanostructures. Using a cost-effective enzymatic strand modification procedure, we are able to batch-modify all DNA strands even of large DNA objects, such as origami nanostructures. The covalent strand linkage increases the temperature stability of the structures by ∼10 K. Generally, our method also allows a 'surgical' introduction of covalent strand linkages at preselected positions. It can also be used to map the strand ligation into chains throughout the whole nanostructure and identify assembly defects. We expect that our method can be applied to a large variety of DNA nanostructures, in particular when full control over the introduced covalent linkages and the absence of side adducts and DNA damages are required.
在 DNA 纳米技术领域,已经开发出许多方法来制备复杂的二维和三维 DNA 纳米结构,以满足许多新兴应用的需求。这些结构通常对非理想环境条件(包括高温)的容忍度较低。在这里,我们应用化学连接方法将相邻的 5'磷酸化和 3'氨基修饰链之间的 DNA 纳米结构中的缺口共价密封。通过使用经济有效的酶促链修饰程序,我们能够批量修饰所有 DNA 链,即使是大型 DNA 物体(如折纸纳米结构)也可以。共价链连接将结构的温度稳定性提高了约 10 K。通常,我们的方法还允许在预选位置“手术”引入共价链连接。它还可以用于将链连接映射到整个纳米结构中的链上,并识别组装缺陷。我们预计我们的方法可以应用于多种 DNA 纳米结构,特别是当需要完全控制引入的共价键并且不存在副产物和 DNA 损伤时。