School of Life Sciences, Tsinghua University-Peking University Center for Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China.
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.
Nucleic Acids Res. 2022 Aug 12;50(14):8392-8398. doi: 10.1093/nar/gkac606.
Enzymatic ligation is a popular method in DNA nanotechnology for structural enforcement. When employed as stability switch for chosen components, ligation can be applied to induce DNA nanostructure reconfiguration. In this study, we investigate the reinforcement effect of ligation on addressable DNA nanostructures assembled entirely from short synthetic strands as the basis of structural reconfiguration. A careful calibration of ligation efficiency is performed on structures with programmable nicks. Systematic investigation using comparative agarose gel electrophoresis enables quantitative assessment of enhanced survivability with ligation treatment on a number of unique structures. The solid ligation performance sets up the foundation for the ligation-based structural reconfiguration. With the capability of switching base pairing status between permanent and transient (ON and OFF) by a simple round of enzymatic treatment, ligation induced reconfiguration can be engineered for DNA nanostructures accordingly.
酶促连接是 DNA 纳米技术中用于结构增强的一种常用方法。当用作所选组件的稳定性开关时,连接可用于诱导 DNA 纳米结构的重新配置。在这项研究中,我们研究了连接对完全由短合成链组装而成的可寻址 DNA 纳米结构的增强效果,作为结构重新配置的基础。通过对具有可编程切口的结构进行仔细的连接效率校准,使用比较琼脂糖凝胶电泳进行系统研究,可对多种独特结构进行定量评估,以确定连接处理后的增强生存能力。可靠的连接性能为基于连接的结构重新配置奠定了基础。通过简单的一轮酶处理即可在永久和瞬时(开和关)碱基配对状态之间切换,因此可以为 DNA 纳米结构设计连接诱导的重新配置。